19,573 research outputs found

    Chandra Resolves the T Tauri Binary System RW Aur

    Full text link
    RW Aur is a multiple T Tauri system consisting of an early-K type primary (A) and a K5 companion (B) at a separation of 1.4 arcsec. RW Aur A drives a bipolar optical jet that is well-characterized optically. We present results of a sensitive Chandra observation whose primary objective was to search for evidence of soft extended X-ray emission along the jet, as has been seen for a few other nearby T Tauri stars. The binary is clearly resolved by Chandra and both stars are detected as X-ray sources. The X-ray spectra of both stars reveal evidence for cool and hot plasma. Suprisingly, the X-ray luminosity of the less-massive secondary is at least twice that of the primary and is variable. The disparity is attributed to the primary whose X-ray luminosity is at the low end of the range for classical T Tauri stars of similar mass based on established correlations. Deconvolved soft-band images show evidence for slight outward elongation of the source structure of RW Aur A along the blueshifted jet axis inside the central arcsecond. In addition, a faint X-ray emission peak is present on the redshifted axis at an offset of 1.2 +- 0.2 arcsec from the star. Deprojected jet speeds determined from previous optical studies are too low to explain this faint emission peak as shock-heated jet plasma. Thus, unless flow speeds in the redshifted jet have been underestimated, other mechanisms such as magnetic jet heating may be involved.Comment: To appear in ApJ; 22 pages, 5 figures, 3 table

    A Chain-Boson Model for the Decoherence and Relaxation of a Few Coupled SQUIDs in a Phonon Bath

    Full text link
    We develop a "chain-boson model" master equation, within the Born-Markov approximation, for a few superconducting quantum interference devices (SQUIDs) coupled into a chain and exchanging their angular momenta with a low temperature phonon bath. Our master equation has four generators; we concentrate on the damping and diffusion and use them to study the relaxation and decoherence of a Heisenberg SQUID chain whose spectrum exhibits critical point energy-level crossings, entangled states, and pairs of resonant transitions. We note that at an energy-level crossing the relevant bath wavelengths are so long that even well-spaced large SQUIDs can partially exhibit collective coupling to the bath, dramatically reducing certain relaxation and decoherence rates. Also, transitions into entangled states can occur even in the case of an independent coupling of each SQUID to the bath. Finally, the pairs of resonant transitions can cause decaying oscillations to emerge in a lower energy subspace.Comment: 13 pages, 8 figure

    Observations of Binary and Single Wolf-Rayet Stars with XMM-Newton and Chandra

    Full text link
    We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission, including the Fe K-alpha line complex, characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only non-detections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.Comment: To appear in conf. proceedings: Close Binaries in the 21st Century - New Opportunities and Challenges, eds. A. Gimenez, E. Guinan, P. Niarchos, S. Rucinski; Astrophys. and Space Sci. (special issue), 2006. 4 pages, 2 figure

    Implementations guidelines, airborne evaluation equipment, advanced system checkout design, phase B Final report, 29 Jun. 1965 - 29 Jul. 1966

    Get PDF
    Airborne checkout equipment functions and implementation for Saturn IVB stage and instrument uni

    XMM-Newton X-ray Observations of LkCa 15: A T Tauri Star With a Formative Planetary System

    Full text link
    High-resolution ground-based images of the T Tauri star LkCa 15 have revealed multiple companions that are thought to comprise a formative planetary system. The candidate protoplanets orbit at distances ~15 - 20 AU within the dust-depleted inner region of the circumstellar disk. Because of its young age (1 - 4 Myr), LkCa 15 provides a benchmark system for testing planet-formation models. We detected LkCa 15 as a bright X-ray source in a short 10 ks Chandra observation in 2009. We report here new results obtained from a deeper 37 ks XMM-Newton observation in 2014. The new data provide better sampling in the time domain and improved sensitivity at low energies below 1 keV. Spectral fits with thermal emission models require at least two temperature components at kT_cool ~ 0.4 keV and kT_hot ~ 2.2 keV. The value of kT_hot is about a factor of two less than inferred from Chandra, suggesting that the hot-component temperature is variable. The best-fit absorption column density is in good agreement with that expected from optical extinction estimates A_v = 1.3 - 1.7 mag. The intrinsic X-ray luminosity is L_x(0.2 - 10 keV) = 3e30 ergs/s. Estimates of the X-ray heating rate of the inner disk and protoplanets are sensitive to the assumed disk gas surface density for which recent ALMA observations give estimates Sigma_0(gas) ~ 100 g/cm^2 at 1 AU from the star. At such densities, X-ray heating is confined mainly to the upper disk layers and X-ray penetration through the disk midplane to the protoplanets at r ~ 15 - 20 AU is negligible.Comment: 20 pages, 6 figures, 3 table

    A Rich Population of X-ray Emitting Wolf-Rayet Stars in the Galactic Starburst Cluster Westerlund 1

    Full text link
    Recent optical and IR studies have revealed that the heavily-reddened starburst cluster Westerlund 1 (Wd 1) contains at least 22 Wolf-Rayet (WR) stars, comprising the richest WR population of any galactic cluster. We present results of a senstive Chandra X-ray observation of Wd 1 which detected 12 of the 22 known WR stars and the mysterious emission line star W9. The fraction of detected WN stars is nearly identical to that of WC stars. The WN stars WR-A and WR-B as well as W9 are exceptionally luminous in X-rays and have similar hard heavily-absorbed spectra with strong Si XIII and S XV emission lines. The luminous high-temperature X-ray emission of these three stars is characteristic of colliding wind binary systems but their binary status remains to be determined. Spectral fits of the X-ray bright sources WR-A and W9 with isothermal plane-parallel shock models require high absorption column densities log NH_{H} = 22.56 (cm2^{-2}) and yield characteristic shock temperatures kT_shock ~ 3 keV (T ~ 35 MK).Comment: ApJL, 2006, in press (3 figures, 1 table

    The Fantastic Four: A plug 'n' play set of optimal control pulses for enhancing nmr spectroscopy

    Full text link
    We present highly robust, optimal control-based shaped pulses designed to replace all 90{\deg} and 180{\deg} hard pulses in a given pulse sequence for improved performance. Special attention was devoted to ensuring that the pulses can be simply substituted in a one-to-one fashion for the original hard pulses without any additional modification of the existing sequence. The set of four pulses for each nucleus therefore consists of 90{\deg} and 180{\deg} point-to-point (PP) and universal rotation (UR) pulses of identical duration. These 1 ms pulses provide uniform performance over resonance offsets of 20 kHz (1H) and 35 kHz (13C) and tolerate reasonably large radio frequency (RF) inhomogeneity/miscalibration of (+/-)15% (1H) and (+/-)10% (13C), making them especially suitable for NMR of small-to-medium-sized molecules (for which relaxation effects during the pulse are negligible) at an accessible and widely utilized spectrometer field strength of 600 MHz. The experimental performance of conventional hard-pulse sequences is shown to be greatly improved by incorporating the new pulses, each set referred to as the Fantastic Four (Fanta4).Comment: 28 pages, 19 figure

    Law and justice for the Queensland colony

    Get PDF
    corecore