5,355 research outputs found
A Landslide Climate Indicator from Machine Learning
In order to create a Landslide Hazard Index, we accessed rain, snow, and a dozen other variables from the National Climate Assessment Land Data Assimilation System. These predictors were converted to probabilities of landslide occurrence with XGBoost, a major machine-learning tool. The model was fitted with thousands of historical landslides from the Pacific Northwest Landslide Inventory (PNLI)
Arctic and subarctic environmental analyses utilizing ERTS-1 imagery
The author has identified the following significant results. ERTS-1 imagery provides a means of distinguishing and monitoring estuarine surface water circulation patterns and changes in the relative sediment load of discharging rivers on a regional basis. Physical boundaries mapped from ERTS-1 imagery in combination with ground truth obtained from existing small scale maps and other sources resulted in improved and more detailed maps of permafrost terrain and vegetation for the same area. Snowpack cover within a research watershed has been analyzed and compared to ground data. Large river icings along the proposed Alaska pipeline route from Prudhoe Bay to the Brooks Range have been monitored. Sea ice deformation and drift northeast of Point Barrow, Alaska have been measured during a four day period in March and shore-fast ice accumulation and ablation along the west coast of Alaska have been mapped for the spring and early summer seasons
POWERLIB: SAS/IML Software for Computing Power in Multivariate Linear Models
The POWERLIB SAS/IML software provides convenient power calculations for a wide range of multivariate linear models with Gaussian errors. The software includes the Box, Geisser-Greenhouse, Huynh-Feldt, and uncorrected tests in the "univariate" approach to repeated measures (UNIREP), the Hotelling Lawley Trace, Pillai-Bartlett Trace, and Wilks Lambda tests in "multivariate" approach (MULTIREP), as well as a limited but useful range of mixed models. The familiar univariate linear model with Gaussian errors is an important special case. For estimated covariance, the software provides confidence limits for the resulting estimated power. All power and confidence limits values can be output to a SAS dataset, which can be used to easily produce plots and tables for manuscripts.
Earth orbital teleoperator systems evaluation
The mechanical extension of the human operator to remote and specialized environments poses a series of complex operational questions. A technical and scientific team was organized to investigate these questions through conducting specific laboratory and analytical studies. The intent of the studies was to determine the human operator requirements for remotely manned systems and to determine the particular effects that various system parameters have on human operator performance. In so doing, certain design criteria based on empirically derived data concerning the ultimate control system, the human operator, were added to the Teleoperator Development Program
Recommended from our members
On adopting Ontology Alignment techniques within the Phenotype Acquisition Process
The work presented in this paper is framed within the context of the BigMed project, aproject funded by the Norwegian Research Council. One of the objectives of BigMed isto enhance the phenotype acquisition process in newborns with a monogenetic disorder,one of the four patient groups studied in the project. The use of the Human PhenotypeOntology (HPO) [1] to tag phenotypes and systems like PhenoTips have substantiallycontributed to the overall phenotype acquisition workflow. PhenoTips [2] is a systemfor the acquisition of phenotypic information in patients with a genetic disease. Phe-noTips also suggests, given a selected set of HPO terms, candidate diagnoses usingOMIM (Online Mendelian Inheritance in Man) codes, and related genes for a subse-quent genetic test. Although PhenoTips represents a fantastic effort, we believe it couldbe extended with suitable Semantic Web solutions. In this paper, we present the firststeps to adopt ontology alignment techniques to contribute to the diagnostic process
Amorphous Systems in Athermal, Quasistatic Shear
We present results on a series of 2D atomistic computer simulations of
amorphous systems subjected to simple shear in the athermal, quasistatic limit.
The athermal quasistatic trajectories are shown to separate into smooth,
reversible elastic branches which are intermittently broken by discrete
catastrophic plastic events. The onset of a typical plastic event is studied
with precision, and it is shown that the mode of the system which is
responsible for the loss of stability has structure in real space which is
consistent with a quadrupolar source acting on an elastic matrix. The plastic
events themselves are shown to be composed of localized shear transformations
which organize into lines of slip which span the length of the simulation cell,
and a mechanism for the organization is discussed. Although within a single
event there are strong spatial correlations in the deformation, we find little
correlation from one event to the next, and these transient lines of slip are
not to be confounded with the persistent regions of localized shear --
so-called "shear bands" -- found in related studies. The slip lines gives rise
to particular scalings with system length of various measures of event size.
Strikingly, data obtained using three differing interaction potentials can be
brought into quantitative agreement after a simple rescaling, emphasizing the
insensitivity of the emergent plastic behavior in these disordered systems to
the precise details of the underlying interactions. The results should be
relevant to understanding plastic deformation in systems such as metallic
glasses well below their glass temperature, soft glassy systems (such as dense
emulsions), or compressed granular materials.Comment: 21 pages, 18 figure
Patenting and licensing of university research: promoting innovation or undermining academic values?
Since the 1980s in the US and the 1990s in Europe, patenting and licensing activities by universities have massively increased. This is strongly encouraged by governments throughout the Western world. Many regard academic patenting as essential to achieve 'knowledge transfer' from academia to industry. This trend has far-reaching consequences for access to the fruits of academic research and so the question arises whether the current policies are indeed promoting innovation or whether they are instead a symptom of a pro-intellectual property (IP) culture which is blind to adverse effects. Addressing this question requires both empirical analysis (how real is the link between academic patenting and licensing and 'development' of academic research by industry?) and normative assessment (which justifications are given for the current policies and to what extent do they threaten important academic values?). After illustrating the major rise of academic patenting and licensing in the US and Europe and commenting on the increasing trend of 'upstream' patenting and the focus on exclusive as opposed to non-exclusive licences, this paper will discuss five negative effects of these trends. Subsequently, the question as to why policymakers seem to ignore these adverse effects will be addressed. Finally, a number of proposals for improving university policies will be made
Sociological and Communication-Theoretical Perspectives on the Commercialization of the Sciences
Both self-organization and organization are important for the further
development of the sciences: the two dynamics condition and enable each other.
Commercial and public considerations can interact and "interpenetrate" in
historical organization; different codes of communication are then
"recombined." However, self-organization in the symbolically generalized codes
of communication can be expected to operate at the global level. The Triple
Helix model allows for both a neo-institutional appreciation in terms of
historical networks of university-industry-government relations and a
neo-evolutionary interpretation in terms of three functions: (i) novelty
production, (i) wealth generation, and (iii) political control. Using this
model, one can appreciate both subdynamics. The mutual information in three
dimensions enables us to measure the trade-off between organization and
self-organization as a possible synergy. The question of optimization between
commercial and public interests in the different sciences can thus be made
empirical.Comment: Science & Education (forthcoming
- …
