20,970 research outputs found
Algebraic Rainich conditions for the tensor V
Algebraic conditions on the Ricci tensor in the Rainich-Misner-Wheeler
unified field theory are known as the Rainich conditions. Penrose and more
recently Bergqvist and Lankinen made an analogy from the Ricci tensor to the
Bel-Robinson tensor , a certain fourth rank tensor
quadratic in the Weyl curvature, which also satisfies algebraic Rainich-like
conditions. However, we found that not only does the tensor
fulfill these conditions, but so also does our recently
proposed tensor , which has many of the desirable
properties of . For the quasilocal small sphere limit
restriction, we found that there are only two fourth rank tensors
and which form a basis for good
energy expressions. Both of them have the completely trace free and causal
properties, these two form necessary and sufficient conditions. Surprisingly
either completely traceless or causal is enough to fulfill the algebraic
Rainich conditions. Furthermore, relaxing the quasilocal restriction and
considering the general fourth rank tensor, we found two remarkable results:
(i) without any symmetry requirement, the algebraic Rainich conditions only
require totally trace free; (ii) with a symmetry requirement, we recovered the
same result as in the quasilocal small sphere limit.Comment: 17 page
Gravitational energy in a small region for the modified Einstein and Landau-Lifshitz pseudotensors
The purpose of the classical Einstein and Landau-Lifshitz pseudotensors is
for determining the gravitational energy. Neither of them can guarantee a
positive energy in holonomic frames. In the small sphere approximation, it has
been required that the quasilocal expression for the gravitational
energy-momentum density should be proportional to the Bel-Robinson tensor
. However, we propose a new tensor
which is the sum of certain tensors
and , it has certain properties
so that it gives the same gravitational "energy-momentum" content as
does. Moreover, we show that a modified Einstein
pseudotensor turns out to be one of the Chen-Nester quasilocal expressions,
while the modified Landau-Lifshitz pseudotensor becomes the Papapetrou
pseudotensor; these two modified pseudotensors have positive gravitational
energy in a small region.Comment:
Gravitational energy from a combination of a tetrad expression and Einstein's pseudotensor
The energy-momentum for a gravitating system can be considered by the tetard
teleparalle gauge current in orthonormal frames. Whereas the Einstein
pseudotensor used holonomic frames. Tetrad expression itself gives a better
result for gravitational energy than Einstein's. Inspired by an idea of Deser,
we found a gravitational energy expression which enjoys the positive energy
property by combining the tetrad expression and the Einstein pseudotensor,
i.e., the connection coefficient has a form appropriate to a suitable
intermediate between orthonormal and holonomic frames.Comment: 5 page
New positive small vacuum region gravitational energy expressions
We construct an infinite number of new holonomic quasi-local gravitational
energy-momentum density pseudotensors with good limits asymptotically and in
small regions, both materially and in vacuum. For small vacuum regions they are
all a positive multiple of the Bel-Robinson tensor and consequently have
positive energy.Comment: 4 page
Theory of electron-phonon interaction in a nonequilibrium open electronic system
We study the effects of time-independent nonequilibrium drive on an open 2D
electron gas system coupled to 2D longitudinal acoustic phonons using the
Keldysh path integral method. The layer electron-phonon system is defined at
the two-dimensional interface between a pair of three-dimensional Fermi liquid
leads, which act both as a particle pump and an infinite bath. The
nonequilibrium steady state is achieved in the layer by assuming the leads to
be thermally equilibrated at two different chemical potentials. This subjects
the layer to an out-of-plane voltage and drives a steady-state charge
current perpendicular to the system. We compute the effects of small voltages
(V\ll\w_D) on the in-plane electron-phonon scattering rate and the electron
effective mass at zero temperature. We also find that the obtained
onequilibrium modification to the acoustic phonon velocity and the Thomas-Fermi
screening length reveal the possibility of tuning these quantities with the
external voltage.Comment: 14 pages, 4 figure
Superstructure high efficiency photovoltaics
A novel class of photovoltaic cascade structures is introduced which features multijunction upper subcells. These superstructure high efficiency photovoltaics (SHEP's) exhibit enhanced upper subcell spectral response because of the additional junctions which serve to reduce bulk recombination losses by decreasing the mean collection distance for photogenerated minority carriers. Two possible electrical configurations were studied and compared: a three-terminal scheme that allows both subcells to be operated at their individual maximum power points and a two-terminal configuration with an intercell ohmic contact for series interconnection. The three-terminal devices were found to be superior both in terms of beginning-of-life expectancy and radiation tolerance. Realistic simulations of three-terminal AlGaAs/GaAs SHEP's show that one sun AMO efficiencies in excess of 26 percent are possible
Nonequilibrium quantum criticality in open electronic systems
A theory is presented of quantum criticality in open (coupled to reservoirs)
itinerant electron magnets, with nonequilibrium drive provided by current flow
across the system. Both departures from equilibrium at conventional
(equilibrium) quantum critical points and the physics of phase transitions
induced by the nonequilibrium drive are treated. Nonequilibrium-induced phase
transitions are found to have the same leading critical behavior as
conventional thermal phase transitions.Comment: 5 pages, 1 figur
Topological superconductivity and Majorana fermions in hybrid structures involving cuprate high-T_c superconductors
The possibility of inducing topological superconductivity with cuprate
high-temperature superconductors (HTSC) is studied for various
heterostructures. We first consider a ballistic planar junction between a HTSC
and a metallic ferromagnet. We assume that inversion symmetry breaking at the
tunnel barrier gives rise to Rashba spin-orbit coupling in the barrier and
allows equal-spin triplet superconductivity to exist in the ferromagnet.
Bogoliubov-de Gennes equations are obtained by explicitly modeling the barrier,
and taking account of the transport anisotropy in the HTSC. By making use of
the self-consistent boundary conditions and solutions for the barrier and HTSC
regions, an effective equation of motion for the ferromagnet is obtained where
Andreev scattering at the barrier is incorporated as a boundary condition for
the ferromagnetic region. For a ferromagnet layer deposited on a (100) facet of
the HTSC, triplet p-wave superconductivity is induced. For the layer deposited
on a (110) facet, the induced gap does not have the p-wave orbital character,
but has an even orbital symmetry and an odd dependence on energy. For the layer
on the (001) facet, an exotic f-wave superconductivity is induced. We also
consider the induced triplet gap in a one-dimensional half-metallic nanowire
deposited on a (001) facet of a HTSC. We find that for a wire axis along the
a-axis, a robust triplet p-wave gap is induced. For a wire oriented 45 degrees
away from the a-axis the induced triplet p-wave gap vanishes. For the
appropriately oriented wire, the induced p-wave gap should give rise to
Majorana fermions at the ends of the half-metallic wire. Based on our result,
topological superconductivity in a semi-conductor nanowire may also be possible
given that it is oriented along the a-axis of the HTSC.Comment: 14 pages, 4 figure
Analisis Sistem Informasi yang Sedang Berjalan dan Rencana Proyek E-Procurement dengan Pendekatan Metode New Information Economics
PT PLN (Persero) is a state owned which manages the biggest electricity businesses that cover the entire territory of Indonesia. His position is very potential for the Indonesian public life requires that PLN is able to manage the investment means the supply of electricity to customers. This is done with the information systems that support business processes in the body of PLN. PT PLN (Persero) has some application systems, infrastructure, service, and management used to increase the ability of the company. In PLN, there is an application that is capable of supporting PLN to conduct the procurement process is procurement information system (e-procurement). PSI Sub-party service providers as e-procurement to see investment information system (SI) and Information Technology (IT) which is proportional to the amount issued benefits and bottom-line impact for companies and can find out the level of funds / investment budgets and alignment of Information Technology there is a project in accordance with company requirements. Those needs based on business needs and applications currently running in the intersection so as to project better. Based on this, the author proposes to analyze the benefits of information technology investments by using the method of New Information Economics (NIE) that combines the two approaches both financial and non-financial. In the method NIE (New Information Economics) will be used four of the five practices that NIE Strategic Demand / Supply Planning, Innovation, Prioritization, and Alignment. The results are expected to help the company to allocate investments SI / IT is more appropriate and supports the company\u27s performance, especially in providing added value to the parties concerned
- …
