629 research outputs found

    Non-equilibrium raft-like membrane domains under continuous recycling

    Full text link
    We present a model for the kinetics of spontaneous membrane domain (raft) assembly that includes the effect of membrane recycling ubiquitous in living cells. We show that the domains have a broad power-law distribution with an average radius that scales with the 1/4 power of the domain lifetime when the line tension at the domain edges is large. For biologically reasonable recycling and diffusion rates the average domain radius is in the tens of nm range, consistent with observations. This represents one possible link between signaling (involving rafts) and traffic (recycling) in cells. Finally, we present evidence that suggests that the average raft size may be the same for all scale-free recycling schemes.Comment: 8 pages, 5 figure

    Compact phases of polymers with hydrogen bonding

    Full text link
    We propose an off-lattice model for a self-avoiding homopolymer chain with two different competing attractive interactions, mimicking the hydrophobic effect and the hydrogen bond formation respectively. By means of Monte Carlo simulations, we are able to trace out the complete phase diagram for different values of the relative strength of the two competing interactions. For strong enough hydrogen bonding, the ground state is a helical conformation, whereas with decreasing hydrogen bonding strength, helices get eventually destabilized at low temperature in favor of more compact conformations resembling β\beta-sheets appearing in native structures of proteins. For weaker hydrogen bonding helices are not thermodynamically relevant anymore.Comment: 5 pages, 3 figures; revised version published in PR

    Folding, Design and Determination of Interaction Potentials Using Off-Lattice Dynamics of Model Heteropolymers

    Full text link
    We present the results of a self-consistent, unified molecular dynamics study of simple model heteropolymers in the continuum with emphasis on folding, sequence design and the determination of the interaction parameters of the effective potential between the amino acids from the knowledge of the native states of the designed sequences.Comment: 8 pages, 3 Postscript figures, uses RevTeX. Submitted to Physical Review Letter

    Flat histogram simulation of lattice polymer systems

    Full text link
    We demonstrate the use of a new algorithm called the Flat Histogram sampling algorithm for the simulation of lattice polymer systems. Thermodynamics properties, such as average energy or entropy and other physical quantities such as end-to-end distance or radius of gyration can be easily calculated using this method. Ground-state energy can also be determined. We also explore the accuracy and limitations of this method. Key words: Monte Carlo algorithms, flat histogram sampling, HP model, lattice polymer systemsComment: 7 RevTeX two-column page

    Modeling study on the validity of a possibly simplified representation of proteins

    Get PDF
    The folding characteristics of sequences reduced with a possibly simplified representation of five types of residues are shown to be similar to their original ones with the natural set of residues (20 types or 20 letters). The reduced sequences have a good foldability and fold to the same native structure of their optimized original ones. A large ground state gap for the native structure shows the thermodynamic stability of the reduced sequences. The general validity of such a five-letter reduction is further studied via the correlation between the reduced sequences and the original ones. As a comparison, a reduction with two letters is found not to reproduce the native structure of the original sequences due to its homopolymeric features.Comment: 6 pages with 4 figure

    Viscosity Dependence of the Folding Rates of Proteins

    Full text link
    The viscosity dependence of the folding rates for four sequences (the native state of three sequences is a beta-sheet, while the fourth forms an alpha-helix) is calculated for off-lattice models of proteins. Assuming that the dynamics is given by the Langevin equation we show that the folding rates increase linearly at low viscosities \eta, decrease as 1/\eta at large \eta and have a maximum at intermediate values. The Kramers theory of barrier crossing provides a quantitative fit of the numerical results. By mapping the simulation results to real proteins we estimate that for optimized sequences the time scale for forming a four turn \alpha-helix topology is about 500 nanoseconds, whereas the time scale for forming a beta-sheet topology is about 10 microseconds.Comment: 14 pages, Latex, 3 figures. One figure is also available at http://www.glue.umd.edu/~klimov/seq_I_H.html, to be published in Physical Review Letter

    Islet isolation assessment in man and large animals

    Get PDF
    Recent progress in islet isolation from the pancreas of large mammals including man, accentuated the need for the development of precise and reproducible techniques to assess islet yield. In this report both quantitative and qualitative criteria for islet isolation assessment were discussed, the main topics being the determination of number, volume, purity, morphologic integrity and in vitro and in vivo function tests of the final islet preparations. It has been recommended that dithizone should be used as a specific stain for immediate detection of islet tissue making it possible to estimate both the total number of islets (dividing them into classes of 50 μ diameter range increments) and the purity of the final preparation. Appropriate morphological assessment should include confirmation of islet identification, assessment of the morphological integrity and of the purity of the islet preparation. The use of fluorometric inclusion and exclusion dyes together have been suggested as a viability assay to simultaneously quantitate the proportion of cells that are intact or damaged. Perifusion of islets with glucose provides a dynamic profile of glucose-mediated insulin release and of the ability of the cells to down regulate insulin secretion after the glycemic challenge is interrupted. Although perifusion data provides a useful guide to islet viability the quantity and kinetics of insulin release do not necessarily predict islet performance after implantation. Therefore, the ultimate test of islet viability is their function after transplantation into a diabetic recipient. For this reason, in vivo models of transplantation of an aliquot of the final islet preparation into diabetic nude (athymic) rodents have been suggested. We hope that these general guidelines will be of assistance to standardize the assessment of islet isolations, making it possible to better interpret and compare procedures from different centers. © 1990 Casa Editrice il Ponte

    Entropic Barriers, Frustration and Order: Basic Ingredients in Protein Folding

    Full text link
    We solve a model that takes into account entropic barriers, frustration, and the organization of a protein-like molecule. For a chain of size MM, there is an effective folding transition to an ordered structure. Without frustration, this state is reached in a time that scales as MλM^{\lambda}, with λ3\lambda\simeq 3. This scaling is limited by the amount of frustration which leads to the dynamical selectivity of proteins: foldable proteins are limited to 300\sim 300 monomers; and they are stable in {\it one} range of temperatures, independent of size and structure. These predictions explain generic properties of {\it in vivo} proteins.Comment: 4 pages, 4 Figures appended as postscript fil

    Mechanical response of random heteropolymers

    Get PDF
    We present an analytical theory for heteropolymer deformation, as exemplified experimentally by stretching of single protein molecules. Using a mean-field replica theory, we determine phase diagrams for stress-induced unfolding of typical random sequences. This transition is sharp in the limit of infinitely long chain molecules. But for chain lengths relevant to biological macromolecules, partially unfolded conformations prevail over an intermediate range of stress. These necklace-like structures, comprised of alternating compact and extended subunits, are stabilized by quenched variations in the composition of finite chain segments. The most stable arrangements of these subunits are largely determined by preferential extension of segments rich in solvophilic monomers. This predicted significance of necklace structures explains recent observations in protein stretching experiments. We examine the statistical features of select sequences that give rise to mechanical strength and may thus have guided the evolution of proteins that carry out mechanical functions in living cells.Comment: 10 pages, 6 figure
    corecore