825 research outputs found
Analysis of simple 2-D and 3-D metal structures subjected to fragment impact
Theoretical methods were developed for predicting the large-deflection elastic-plastic transient structural responses of metal containment or deflector (C/D) structures to cope with rotor burst fragment impact attack. For two-dimensional C/D structures both, finite element and finite difference analysis methods were employed to analyze structural response produced by either prescribed transient loads or fragment impact. For the latter category, two time-wise step-by-step analysis procedures were devised to predict the structural responses resulting from a succession of fragment impacts: the collision force method (CFM) which utilizes an approximate prediction of the force applied to the attacked structure during fragment impact, and the collision imparted velocity method (CIVM) in which the impact-induced velocity increment acquired by a region of the impacted structure near the impact point is computed. The merits and limitations of these approaches are discussed. For the analysis of 3-d responses of C/D structures, only the CIVM approach was investigated
User's guide to computer programs JET 5A and CIVM-JET 5B to calculate the large elastic-plastic dynamically-induced deformations of multilayer partial and/or complete structural rings
These structural ring deflections lie essentially in one plane and, hence, are called two-dimensional (2-d). The structural rings may be complete or partial; the former may be regarded as representing a fragment containment ring while the latter may be viewed as a 2-d fragment-deflector structure. These two types of rings may be either free or supported in various ways (pinned-fixed, locally clamped, elastic-foundation supported, mounting-bracket supported, etc.). The initial geometry of each ring may be circular or arbitrarily curved; uniform-thickness or variable-thickness rings may be analyzed. Strain-hardening and strain-rate effects of initially-isotropic material are taken into account. An approximate analysis utilizing kinetic energy and momentum conservation relations is used to predict the after-impact velocities of each fragment and of the impact-affected region of the ring; this procedure is termed the collision-imparted velocity method (CIVM) and is used in the CIVM-JET 5 B program. This imparted-velocity information is used in conjunction with a finite-element structural response computation code to predict the transient, large-deflection, elastic-plastic responses of the ring. Similarly, the equations of motion of each fragment are solved in small steps in time. Provisions are made in the CIVM-JET 5B code to analyze structural ring response to impact attack by from 1 to 3 fragments, each with its own size, mass, translational velocity components, and rotational velocity. The effects of friction between each fragment and the impacted ring are included
The role of environmental perceptions in migration decision-making: evidence from both migrants and non-migrants in five developing countries
© 2016, Springer Science+Business Media New York. Research has demonstrated that, in a variety of settings, environmental factors influence migration. Yet much of the existing work examines objective indicators of environmental conditions as opposed to the environmental perceptions of potential migrants. This paper examines migration decision-making and individual perceptions of different types of environmental change (sudden vs. gradual environmental events) with a focus on five developing countries: Vietnam, Cambodia, Uganda, Nicaragua, and Peru. The survey data include both migrants and non-migrants, with the results suggesting that individual perceptions of long-term (gradual) environmental events, such as droughts, lower the likelihood of internal migration. However, sudden-onset events, such as floods, increase movement. These findings substantially improve our understanding of perceptions as related to internal migration and also suggest that a more differentiated perspective is needed on environmental migration as a form of adaptation
Finite-element nonlinear transient response computer programs PLATE 1 and CIVM-PLATE 1 for the analysis of panels subjected to impulse or impact loads
Two computer programs are described for predicting the transient large deflection elastic viscoplastic responses of thin single layer, initially flat unstiffened or integrally stiffened, Kirchhoff-Lov ductile metal panels. The PLATE 1 program pertains to structural responses produced by prescribed externally applied transient loading or prescribed initial velocity distributions. The collision imparted velocity method PLATE 1 program concerns structural responses produced by impact of an idealized nondeformable fragment. Finite elements are used to represent the structure in both programs. Strain hardening and strain rate effects of initially isotropic material are considered
An Analysis of ALMA Deep Fields and the Perceived Dearth of High-z Galaxies
Deep, pencil-beam surveys from ALMA at 1.1-1.3mm have uncovered an apparent
absence of high-redshift dusty galaxies, with existing redshift distributions
peaking around . This has led to a perceived dearth of dusty
systems at , and the conclusion, according to some models, that the early
Universe was relatively dust-poor. In this paper, we extend the backward
evolution galaxy model described by Casey et al. (2018) to the ALMA regime (in
depth and area) and determine that the measured number counts and redshift
distributions from ALMA deep field surveys are fully consistent with
constraints of the infrared luminosity function (IRLF) at determined by
single-dish submillimeter and millimeter surveys conducted on much larger
angular scales (deg). We find that measured 1.1-1.3mm number
counts are most constraining for the measurement of the faint-end slope of the
IRLF at . Recent
studies have suggested that UV-selected galaxies at may be particularly
dust-poor, but we find their millimeter-wave emission cannot rule out
consistency with the Calzetti dust attenuation law even by assuming relatively
typical, cold-dust (K) SEDs. Our models suggest that
the design of ALMA deep fields requires substantial revision to constrain the
prevalence of early Universe obscured starbursts. The most promising
avenue for detection and characterization of such early dusty galaxies will
come from future ALMA 2mm blank field surveys covering a few hundred
arcmin and the combination of existing and future dual-purpose 3mm
datasets.Comment: 21 pages, 12 figures, accepted for publication in Ap
Recommended from our members
Scientific rationale of a Saturn probe mission
We describe the main scientific goals to be addressed by future in situ exploration of Saturn
The Rest-Frame Submillimeter Spectrum of High-Redshift, Dusty, Star-Forming Galaxies
We present the average rest-frame spectrum of high-redshift dusty,
star-forming galaxies from 250-770GHz. This spectrum was constructed by
stacking ALMA 3mm spectra of 22 such sources discovered by the South Pole
Telescope and spanning z=2.0-5.7. In addition to multiple bright spectral
features of 12CO, [CI], and H2O, we also detect several faint transitions of
13CO, HCN, HNC, HCO+, and CN, and use the observed line strengths to
characterize the typical properties of the interstellar medium of these
high-redshift starburst galaxies. We find that the 13CO brightness in these
objects is comparable to that of the only other z>2 star-forming galaxy in
which 13CO has been observed. We show that the emission from the high-critical
density molecules HCN, HNC, HCO+, and CN is consistent with a warm, dense
medium with T_kin ~ 55K and n_H2 >~ 10^5.5 cm^-3. High molecular hydrogen
densities are required to reproduce the observed line ratios, and we
demonstrate that alternatives to purely collisional excitation are unlikely to
be significant for the bulk of these systems. We quantify the average emission
from several species with no individually detected transitions, and find
emission from the hydride CH and the linear molecule CCH for the first time at
high redshift, indicating that these molecules may be powerful probes of
interstellar chemistry in high-redshift systems. These observations represent
the first constraints on many molecular species with rest-frame transitions
from 0.4-1.2mm in star-forming systems at high redshift, and will be invaluable
in making effective use of ALMA in full science operations.Comment: 19 pages, 10 figures (2 in appendices); accepted for publication in
Ap
SPT0346-52: Negligible AGN Activity in a Compact, Hyper-starburst Galaxy at z = 5.7
We present Chandra ACIS-S and ATCA radio continuum observations of the
strongly lensed dusty, star-forming galaxy SPT-S J034640-5204.9 (hereafter
SPT0346-52) at = 5.656. This galaxy has also been observed with ALMA, HST,
Spitzer, Herschel, APEX, and the VLT. Previous observations indicate that if
the infrared (IR) emission is driven by star formation, then the inferred
lensing-corrected star formation rate ( 4500 M_{\sun} yr) and
star formation rate surface density ( 2000 M_{\sun}
{yr^{-1}} {kpc^{-2}}) are both exceptionally high. It remained unclear from
the previous data, however, whether a central active galactic nucleus (AGN)
contributes appreciably to the IR luminosity. The {\it Chandra} upper limit
shows that SPT0346-52 is consistent with being star-formation dominated in the
X-ray, and any AGN contribution to the IR emission is negligible. The ATCA
radio continuum upper limits are also consistent with the FIR-to-radio
correlation for star-forming galaxies with no indication of an additional AGN
contribution. The observed prodigious intrinsic IR luminosity of (3.6
0.3) 10 L_{\sun} originates almost solely from vigorous star
formation activity. With an intrinsic source size of 0.61 0.03 kpc,
SPT0346-52 is confirmed to have one of the highest of any known
galaxy. This high , which approaches the Eddington limit for a
radiation pressure supported starburst, may be explained by a combination of
very high star formation efficiency and gas fraction.Comment: 8 pages, 6 figures, accepted for publication in Ap
ALMA Observations of SPT-Discovered, Strongly Lensed, Dusty, Star-Forming Galaxies
We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 micrometer
imaging of four high-redshift (z=2.8-5.7) dusty sources that were detected
using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing
radio to far-infrared catalogs. At 1.5 arcsec resolution, the ALMA data reveal
multiple images of each submillimeter source, separated by 1-3 arcsec,
consistent with strong lensing by intervening galaxies visible in near-IR
imaging of these sources. We describe a gravitational lens modeling procedure
that operates on the measured visibilities and incorporates
self-calibration-like antenna phase corrections as part of the model
optimization, which we use to interpret the source structure. Lens models
indicate that SPT0346-52, located at z=5.7, is one of the most luminous and
intensely star-forming sources in the universe with a lensing corrected FIR
luminosity of 3.7 X 10^13 L_sun and star formation surface density of 4200
M_sun yr^-1 kpc^-2. We find magnification factors of 5 to 22, with lens
Einstein radii of 1.1-2.0 arcsec and Einstein enclosed masses of 1.6-7.2x10^11
M_sun. These observations confirm the lensing origin of these objects, allow us
to measure the their intrinsic sizes and luminosities, and demonstrate the
important role that ALMA will play in the interpretation of lensed
submillimeter sources.Comment: Accepted for publication in the Astrophysics Journa
On the Gas Content, Star Formation Efficiency, and Environmental Quenching of Massive Galaxies in Protoclusters at z ≈ 2.0–2.5
We present ALMA Band 6 (ν = 233 GHz, λ = 1.3 mm) continuum observations toward 68 "normal" star-forming galaxies within two Coma-like progenitor structures at z = 2.10 and 2.47, from which ISM masses are derived, providing the largest census of molecular gas mass in overdense environments at these redshifts. Our sample comprises galaxies with a stellar mass range of 1 × 10⁹ M_⊙–4 × 10¹¹ M_⊙ with a mean M_★ ≈ 6 × 10¹⁰ M_⊙. Combining these measurements with multiwavelength observations and spectral energy distribution modeling, we characterize the gas mass fraction and the star formation efficiency, and infer the impact of the environment on galaxies' evolution. Most of our detected galaxies (≳70%) have star formation efficiencies and gas fractions similar to those found for coeval field galaxies and in agreement with the field scaling relations. However, we do find that the protoclusters contain an increased fraction of massive, gas-poor galaxies, with low gas fractions (f_(gas) ≾ 6%–10%) and red rest-frame ultraviolet/optical colors typical of post-starburst and passive galaxies. The relatively high abundance of passive galaxies suggests an accelerated evolution of massive galaxies in protocluster environments. The large fraction of quenched galaxies in these overdense structures also implies that environmental quenching takes place during the early phases of cluster assembly, even before virialization. From our data, we derive a quenching efficiency of ϵ_q ≈ 0.45 and an upper limit on the quenching timescale of τ_q < 1 Gyr
- …
