1,190 research outputs found
Environmental Impact on the Southeast Limb of the Cygnus Loop
We analyze observations from the Chandra X-ray Observatory of the southeast
knot of the Cygnus Loop supernova remnant. In this region, the blast wave
propagates through an inhomogeneous environment. Extrinsic differences and
subsequent multiple projections along the line of sight rather than intrinsic
shock variations, such as fluid instabilities, account for the apparent
complexity of the images. Interactions between the supernova blast wave and
density enhancements of a large interstellar cloud can produce the
morphological and spectral characteristics. Most of the X-ray flux arises in
such interactions, not in the diffuse interior of the supernova remnant.
Additional observations at optical and radio wavelengths support this account
of the existing interstellar medium and its role in shaping the Cygnus Loop,
and they demonstrate that the southeast knot is not a small cloud that the
blast wave has engulfed. These data are consistent with rapid equilibration of
electron and ion temperatures behind the shock front, and the current blast
wave velocity v_{bw} approx 330 km/s. Most of this area does not show strong
evidence for non-equilibrium ionization conditions, which may be a consequence
of the high densities of the bright emission regions.Comment: To appear in ApJ, April 1, 200
Electron Temperature of Ultracold Plasmas
We study the evolution of ultracold plasmas by measuring the electron
temperature. Shortly after plasma formation, competition between heating and
cooling mechanisms drives the electron temperature to a value within a narrow
range regardless of the initial energy imparted to the electrons. In agreement
with theory predictions, plasmas exhibit values of the Coulomb coupling
parameter less than 1.Comment: 4 pages, plus four figure
A supersymmetric model for triggering Supernova Ia in isolated white dwarfs
We propose a model for supernovae Ia explosions based on a phase transition
to a supersymmetric state which becomes the active trigger for the deflagration
starting the explosion in an isolated sub-Chandrasekhar white dwarf star. With
two free parameters we fit the rate and several properties of type Ia
supernovae and address the gap in the supermassive black hole mass
distribution. One parameter is a critical density fit to about
g/cc while the other has the units of a space time volume and is found to be of
order Gyr where is the earth radius. The model involves
a phase transition to an exact supersymmetry in a small core of a dense star.Comment: 20 pages, 5 figures, expanded version to be published in Physical
Review
Information-theoretic determination of ponderomotive forces
From the equilibrium condition applied to an isolated
thermodynamic system of electrically charged particles and the fundamental
equation of thermodynamics () subject
to a new procedure, it is obtained the Lorentz's force together with
non-inertial terms of mechanical nature. Other well known ponderomotive forces,
like the Stern-Gerlach's force and a force term related to the Einstein-de
Haas's effect are also obtained. In addition, a new force term appears,
possibly related to a change in weight when a system of charged particles is
accelerated.Comment: 10 page
On the fraction of dark matter in charged massive particles (CHAMPs)
From various cosmological, astrophysical and terrestrial requirements, we
derive conservative upper bounds on the present-day fraction of the mass of the
Galactic dark matter (DM) halo in charged massive particles (CHAMPs). If dark
matter particles are neutral but decay lately into CHAMPs, the lack of
detection of heavy hydrogen in sea water and the vertical pressure equilibrium
in the Galactic disc turn out to put the most stringent bounds. Adopting very
conservative assumptions about the recoiling velocity of CHAMPs in the decay
and on the decay energy deposited in baryonic gas, we find that the lifetime
for decaying neutral DM must be > (0.9-3.4)x 10^3 Gyr. Even assuming the
gyroradii of CHAMPs in the Galactic magnetic field are too small for halo
CHAMPs to reach Earth, the present-day fraction of the mass of the Galactic
halo in CHAMPs should be < (0.4-1.4)x 10^{-2}. We show that redistributing the
DM through the coupling between CHAMPs and the ubiquitous magnetic fields
cannot be a solution to the cuspy halo problem in dwarf galaxies.Comment: 21 pages, 2 figures. To appear in JCA
Collisional cross sections and momentum distributions in astrophysical plasmas: dynamics and statistical mechanics link
We show that, in stellar core plasmas, the one-body momentum distribution
function is strongly dependent, at least in the high velocity regime, on the
microscopic dynamics of ion elastic collisions and therefore on the effective
collisional cross sections, if a random force field is present. We take into
account two cross sections describing ion-dipole and ion-ion screened
interactions. Furthermore we introduce a third unusual cross section, to link
statistical distributions and a quantum effect originated by the
energy-momentum uncertainty owing to many-body collisions, and propose a
possible physical interpretation in terms of a tidal-like force. We show that
each collisional cross section gives rise to a slight peculiar correction on
the Maxwellian momentum distribution function in a well defined velocity
interval. We also find a possible link between microscopical dynamics of ions
and statistical mechanics interpreting our results in the framework of
non-extensive statistical mechanics.Comment: 8 page
Mass Segregation in Globular Clusters
We present the results of a new study of mass segregation in two-component
star clusters, based on a large number of numerical N-body simulations using
our recently developed dynamical Monte Carlo code. Specifically, we follow the
dynamical evolution of clusters containing stars with individual masses m_1 as
well as a tracer population of objects with individual masses m_2=\mu m_1,
using N=10^5 total stars. For heavy tracers, which could represent stellar
remnants such as neutron stars or black holes in a globular cluster, we
characterize in a variety of ways the tendency for these objects to concentrate
in or near the cluster core. In agreement with simple theoretical arguments, we
find that the characteristic time for this mass segregation process varies as
1/\mu. For models with very light tracers (\mu <~ 10^-2), which could represent
free-floating planets or brown dwarfs, we find the expected depletion of light
objects in the cluster core, but also sometimes a significant enhancement in
the halo. Using these results we estimate the optical depth to gravitational
microlensing by planetary mass objects or brown dwarfs in typical globular
clusters. For some initial conditions, the optical depth in the halo due to
very low-mass objects could be much greater than that of luminous stars. If we
apply our results to M22, using the recent null detection of Sahu, Anderson, &
King (2001), we find an upper limit of ~25% at the 63% confidence level for the
current mass fraction of M22 in the form of very low-mass objects.Comment: Accepted for publication in ApJ. Minor revisions reflecting the new
results of Sahu et al. on M22. 13 pages in emulateapj style, including 9
figures and 3 table
Dark mammoth trunks in the merging galaxy NGC 1316 and a mechanism of cosmic double helices
NGC 1316 is a giant, elliptical galaxy containing a complex network of dark,
dust features. The morphology of these features has been examined in some
detail using a Hubble Space Telescope, Advanced Camera for Surveys image. It is
found that most of the features are constituted of long filaments. There also
exist a great number of dark structures protruding inwards from the filaments.
Many of these structures are strikingly similar to elephant trunks in H II
regions in the Milky Way Galaxy, although much larger. The structures, termed
mammoth trunks, generally are filamentary and often have shapes resembling the
letters V or Y. In some of the mammoth trunks the stem of the Y can be resolved
into two or more filaments, many of which showing signs of being intertwined. A
model of the mammoth trunks, related to a recent theory of elephant trunks, is
proposed. Based on magnetized filaments, the model is capable of giving an
account of the various shapes of the mammoth trunks observed, including the
twined structures.Comment: Accepted for publication in Astrophysics & Space Scienc
(In)finiteness of Spherically Symmetric Static Perfect Fluids
This work is concerned with the finiteness problem for static, spherically
symmetric perfect fluids in both Newtonian Gravity and General Relativity. We
derive criteria on the barotropic equation of state guaranteeing that the
corresponding perfect fluid solutions possess finite/infinite extent. In the
Newtonian case, for the large class of monotonic equations of state, and in
General Relativity we improve earlier results
- …
