432 research outputs found
Archaic mitochondrial DNA inserts in modern day nuclear genomes
Traces of interbreeding of Neanderthals and Denisovans with modern humans in the form of archaic DNA have been detected in the genomes of present-day human populations outside sub-Saharan Africa. Up to now, only nuclear archaic DNA has been detected in modern humans; we therefore attempted to identify archaic mitochondrial DNA (mtDNA) residing in modern human nuclear genomes as nuclear inserts of mitochondrial DNA (NUMTs)
WGS-based telomere length analysis in Dutch family trios implicates stronger maternal inheritance and a role for RRM1 gene
Multiplex DNA Typing of Short-Tandem-Repeat Loci on the Y Chromosome
This is the published version. Copyright 1997 de Gruyter.To facilitate evolutionary and forensic studies of DNA
polymorphisms on the Y chromosome, we devised a
multiplex amplification procedure for short-tandemrepeat
(STR) loci. Four tetranucleotide STR loci
(DYS19, DYS390, DYS391, and DYS393) were simultaneously
amplified with FAM-labeled primers and
genotypes were determined with an automated DNA
sequencer. We typed 162 males from three U.S. populations
(African-Americans, European-Americans and
Hispanics) and found that the haplotype diversities
range from 0.920 to 0.969. This quadruplex system
provides a facile means of genotyping these Y chromosome
STRs, and should be useful in population
genetic and forensic applications
The foot in forensic human identification - a review
The identification of human remains is a process which can be attempted irrespective of the stage of decomposition in which the remains are found or the anatomical regions recovered. In recent years, the discovery of fragmented human remains has garnered significant attention from the national and international media, particularly the recovery of multiple lower limbs and feet from coastlines in North America. While cases such as these stimulate public curiosity, they present unique challenges to forensic practitioners in relation to the identification of the individual from whom the body part originated. There is a paucity of literature pertaining to the foot in forensic human identification and in particular, in relation to the assessment of the parameters represented by the biological profile. This article presents a review of the literature relating to the role of the foot in forensic human identification and highlights the areas in which greater research is required. © 2013
South Asian maternal and paternal lineages in southern Thailand and the role of sex-biased admixture
Previous genome-wide studies have reported South Asian (SA) ancestry in several Mainland Southeast Asian (MSEA) populations; however, additional details concerning population history, in particular the role of sex-specific aspects of the SA admixture in MSEA populations can be addressed with uniparental markers. Here, we generated *2.3 mB sequences of the male-specific portions of the Y chromosome (MSY) of a Tai-Kadai (TK)speaking Southern Thai group (SouthernThai_TK), and complete mitochondrial (mtDNA) genomes of the SouthernThai_TK and an Austronesian (AN)-speaking Southern Thai (SouthernThai_AN) group. We identified new mtDNA haplogroups, e.g. Q3, E1a1a1, B4a1a and M7c1c3 that have not previously reported in Thai populations, but are frequent in Island Southeast Asia and Oceania, suggesting interactions between MSEA and these regions. SA prevalent mtDNA haplogroups were observed at frequencies of ~35–45% in the Southern Thai groups; both of them showed more genetic relatedness to Austroasiatic (AA) speaking Mon than to any other group. For MSY, SouthernThai_TK had ~35% SA prevalent haplogroups and exhibited closer genetic affinity to Central Thais. We also analyzed published data from other MSEA populations and observed SA ancestry in some additional MSEA populations that also reflects sex-biased admixture; in general, most AA- and AN-speaking groups in MSEA were closer to SA than to TK groups based on mtDNA, but the opposite pattern was observed for the MSY. Overall, our results of new genetic lineages and sex-biased admixture from SA to MSEA groups attest to the additional value that uniparental markers can add to studies of genome-wide variation. © 2023 Woravatin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.<br
Functional impact and evolution of a novel human polymorphic inversion that disrupts a gene and creates a fusion transcript
Since the discovery of chromosomal inversions almost 100 years ago, how they are maintained in natural populations has been a highly debated issue. One of the hypotheses is that inversion breakpoints could affect genes and modify gene expression levels, although evidence of this came only from laboratory mutants. In humans, a few inversions have been shown to associate with expression differences, but in all cases the molecular causes have remained elusive. Here, we have carried out a complete characterization of a new human polymorphic inversion and determined that it is specific to East Asian populations. In addition, we demonstrate that it disrupts the ZNF257 gene and, through the translocation of the first exon and regulatory sequences, creates a previously nonexistent fusion transcript, which together are associated to expression changes in several other genes. Finally, we investigate the potential evolutionary and phenotypic consequences of the inversion, and suggest that it is probably deleterious. This is therefore the first example of a natural polymorphic inversion that has position effects and creates a new chimeric gene, contributing to answer an old question in evolutionary biology
Cryptic species in a well-known habitat: applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida)
Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of ‘taxonomics’. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from highthroughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research
DNA sequences of Alu elements indicate a recent replacement of the human autosomal genetic complement
DNA sequences of neutral nuclear autosomal loci, compared across diverse human populations, provide a previously untapped perspective into the mode and tempo of the emergence of modern humans and a critical comparison with published clonally inherited mitochondrial DNA and Y chromosome measurements of human diversity. We obtained over 55 kilobases of sequence from three autosomal loci encompassing Alu repeats for representatives of diverse human populations as well as orthologous sequences for other hominoid species at one of these loci. Nucleotide diversity was exceedingly low. Most individuals and populations were identical. Only a single nucleotide difference distinguished presumed ancestral alleles from descendants. These results differ from those expected if alleles from divergent archaic populations were maintained through multiregional continuity. The observed virtual lack of sequence polymorphism is the signature of a recent single origin for modern humans, with general replacement of archaic populations
- …
