27 research outputs found

    Networks of microstructural damage predict disability in multiple sclerosis

    Get PDF
    Background: Network-based measures are emerging MRI markers in multiple sclerosis (MS). We aimed to identify networks of white (WM) and grey matter (GM) damage that predict disability progression and cognitive worsening using data-driven methods. // Methods: We analysed data from 1836 participants with different MS phenotypes (843 in a discovery cohort and 842 in a replication cohort). We calculated standardised T1-weighted/T2-weighted (sT1w/T2w) ratio maps in brain GM and WM, and applied spatial independent component analysis to identify networks of covarying microstructural damage. Clinical outcomes were Expanded Disability Status Scale worsening confirmed at 24 weeks (24-week confirmed disability progression (CDP)) and time to cognitive worsening assessed by the Symbol Digit Modalities Test (SDMT). We used Cox proportional hazard models to calculate predictive value of network measures. // Results: We identified 8 WM and 7 GM sT1w/T2w networks (of regional covariation in sT1w/T2w measures) in both cohorts. Network loading represents the degree of covariation in regional T1/T2 ratio within a given network. The loading factor in the anterior corona radiata and temporo-parieto-frontal components were associated with higher risks of developing CDP both in the discovery (HR=0.85, p<0.05 and HR=0.83, p<0.05, respectively) and replication cohorts (HR=0.84, p<0.05 and HR=0.80, p<0.005, respectively). The decreasing or increasing loading factor in the arcuate fasciculus, corpus callosum, deep GM, cortico-cerebellar patterns and lesion load were associated with a higher risk of developing SDMT worsening both in the discovery (HR=0.82, p<0.01; HR=0.87, p<0.05; HR=0.75, p<0.001; HR=0.86, p<0.05 and HR=1.27, p<0.0001) and replication cohorts (HR=0.82, p<0.005; HR=0.73, p<0.0001; HR=0.80, p<0.005; HR=0.85, p<0.01 and HR=1.26, p<0.0001). // Conclusions: GM and WM networks of microstructural changes predict disability and cognitive worsening in MS. Our approach may be used to identify patients at greater risk of disability worsening and stratify cohorts in treatment trials

    Longitudinal network-based brain grey matter MRI measures are clinically relevant and sensitive to treatment effects in multiple sclerosis

    Get PDF
    In multiple sclerosis clinical trials, MRI outcome measures are typically extracted at a whole-brain level, but pathology is not homogeneous across the brain and so whole-brain measures may overlook regional treatment effects. Data-driven methods, such as independent component analysis, have shown promise in identifying regional disease effects but can only be computed at a group level and cannot be applied prospectively. The aim of this work was to develop a technique to extract longitudinal independent component analysis network-based measures of co-varying grey matter volumes, derived from T1-weighted volumetric MRI, in individual study participants, and assess their association with disability progression and treatment effects in clinical trials. We used longitudinal MRI and clinical data from 5089 participants (22 045 visits) with multiple sclerosis from eight clinical trials. We included people with relapsing–remitting, primary and secondary progressive multiple sclerosis. We used data from five negative clinical trials (2764 participants, 13 222 visits) to extract the independent component analysis-based measures. We then trained and cross-validated a least absolute shrinkage and selection operator regression model (which can be applied prospectively to previously unseen data) to predict the independent component analysis measures from the same regional MRI volume measures and applied it to data from three positive clinical trials (2325 participants, 8823 visits). We used nested mixed-effect models to determine how networks differ across multiple sclerosis phenotypes are associated with disability progression and to test sensitivity to treatment effects. We found 17 consistent patterns of co-varying regional volumes. In the training cohort, volume loss was faster in four networks in people with secondary progressive compared with relapsing–remitting multiple sclerosis and three networks with primary progressive multiple sclerosis. Volume changes were faster in secondary compared with primary progressive multiple sclerosis in four networks. In the combined positive trials cohort, eight independent component analysis networks and whole-brain grey matter volume measures showed treatment effects, and the magnitude of treatment–placebo differences in the network-based measures was consistently greater than with whole-brain grey matter volume measures. Longitudinal network-based analysis of grey matter volume changes is feasible using clinical trial data, showing differences cross-sectionally and longitudinally between multiple sclerosis phenotypes, associated with disability progression, and treatment effects. Future work is required to understand the pathological mechanisms underlying these regional changes

    Enabling new insights from old scans by repurposing clinical MRI archives for multiple sclerosis research

    Get PDF
    Magnetic resonance imaging (MRI) biomarkers are vital for multiple sclerosis (MS) clinical research and trials but quantifying them requires multi-contrast protocols and limits the use of abundant single-contrast hospital archives. We developed MindGlide, a deep learning model to extract brain region and white matter lesion volumes from any single MRI contrast. We trained MindGlide on 4247 brain MRI scans from 2934 MS patients across 592 scanners, and externally validated it using 14,952 scans from 1,001 patients in two clinical trials (primary-progressive MS and secondary-progressive MS trials) and a routine-care MS dataset. The model outperformed two state-of-the-art models when tested against expert-labelled lesion volumes. In clinical trials, MindGlide detected treatment effects on T2-lesion accrual and cortical and deep grey matter volume loss. In routine-care data, T2-lesion volume increased with moderate-efficacy treatment but remained stable with high-efficacy treatment. MindGlide uniquely enables quantitative analysis of archival single-contrast MRIs, unlocking insights from untapped hospital datasets

    Optical coherence tomography in secondary progressive multiple sclerosis: cross-sectional and longitudinal exploratory analysis from the MS-SMART randomised controlled trial

    Get PDF
    \ua9 Author(s) (or their employer(s)) 2024. Background: Optical coherence tomography (OCT) inner retinal metrics reflect neurodegeneration in multiple sclerosis (MS). We explored OCT measures as biomarkers of disease severity in secondary progressive MS (SPMS). Methods: We investigated people with SPMS from the Multiple Sclerosis-Secondary Progressive Multi-Arm Randomisation Trial OCT substudy, analysing brain MRIs, clinical assessments and OCT at baseline and 96 weeks. We measured peripapillary retinal nerve fibre layer (pRNFL) and macular ganglion cell-inner plexiform layer (GCIPL) thicknesses. Statistical analysis included correlations, multivariable linear regressions and mixed-effects models. Results: Of the 212 participants recruited at baseline, 192 attended at 96 weeks follow-up. Baseline pRNFL and GCIPL thickness correlated with Symbol Digit Modalities Test (SDMT) (respectively, r=0.33 (95% CI 0.20 to 0.47); r=0.39 (0.26 to 0.51)) and deep grey matter volume (respectively, r=0.21 (0.07 to 0.35); r=0.28 (0.14 to 0.41)). pRNFL was associated with Expanded Disability Status Scale (EDSS) score change (normalised beta (B)=-0.12 (-0.23 to -0.01)). Baseline pRNFL and GCIPL were associated with Timed 25-Foot Walk change (T25FW) (respectively, B=-0.14 (-0.25 to -0.03); B=-0.20 (-0.31 to -0.10)) and 96-week percentage brain volume change (respectively, B=0.14 (0.03 to 0.25); B=0.23 (0.12 to 0.34)). There were significant annualised thinning rates: pRNFL (-0.83 \ub5m/year) and GCIPL (-0.37 \ub5m/year). Conclusions: In our cohort of people with SPMS and long disease duration, OCT measures correlated with SDMT and deep grey matter volume at baseline; EDSS, T25FW and whole brain volume change at follow-up

    Investigating the relationship between thalamic iron concentration and disease severity in secondary progressive multiple sclerosis using quantitative susceptibility mapping: Cross-sectional analysis from the MS-STAT2 randomised controlled trial

    Get PDF
    BACKGROUND: Deep grey matter pathology is a key driver of disability worsening in people with multiple sclerosis. Quantitative susceptibility mapping (QSM) is an advanced magnetic resonance imaging (MRI) technique which quantifies local magnetic susceptibility from variations in phase produced by changes in the local magnetic field. In the deep grey matter, susceptibility has previously been validated against tissue iron concentration. However, it currently remains unknown whether susceptibility is abnormal in older progressive MS cohorts, and whether it correlates with disability. OBJECTIVES: To investigate differences in mean regional susceptibility in deep grey matter between people with secondary progressive multiple sclerosis (SPMS) and healthy controls; to examine in patients the relationships between deep grey matter susceptibility and clinical and imaging measures of disease severity. METHODS: Baseline data from a subgroup of the MS-STAT2 trial (simvastatin vs. placebo in SPMS, NCT03387670) were included. The subgroup underwent clinical assessments and an advanced MRI protocol at 3T. A cohort of age-matched healthy controls underwent the same MRI protocol. Susceptibility maps were reconstructed using a robust QSM pipeline from multi-echo 3D gradient-echo sequence. Regions of interest (ROIs) in the thalamus, globus pallidus and putamen were segmented from 3D T1-weighted images, and lesions segmented from 3D fluid-attenuated inversion recovery images. Linear regression was used to compare susceptibility from ROIs between patients and controls, adjusting for age and sex. Where significant differences were found, we further examined the associations between ROI susceptibility and clinical and imaging measures of MS severity. RESULTS: 149 SPMS (77% female; mean age: 53 yrs; median Expanded Disability Status Scale (EDSS): 6.0 [interquartile range 4.5–6.0]) and 33 controls (52% female, mean age: 57) were included. Thalamic susceptibility was significantly lower in SPMS compared to controls: mean (SD) 28.6 (12.8) parts per billion (ppb) in SPMS vs. 39.2 (12.7) ppb in controls; regression coefficient: −12.0 [95% confidence interval: −17.0 to −7.1], p < 0.001. In contrast, globus pallidus and putamen susceptibility were similar between both groups. In SPMS, a 10 ppb lower thalamic susceptibility was associated with a +0.13 [+0.01 to +0.24] point higher EDSS (p < 0.05), a −2.4 [−3.8 to −1.0] point lower symbol digit modality test (SDMT, p = 0.001), and a −2.4 [−3.7 to −1.1] point lower Sloan low contrast acuity, 2.5% (p < 0.01). Lower thalamic susceptibility was also strongly associated with a higher T2 lesion volume (T2LV, p < 0.001) and lower normalised whole brain, deep grey matter and thalamic volumes (all p < 0.001). CONCLUSIONS: The reduced thalamic susceptibility found in SPMS compared to controls suggests that thalamic iron concentrations are lower at this advanced stage of the disease. The observed relationships between lower thalamic susceptibility and more severe physical, cognitive and visual disability suggests that reductions in thalamic iron may correlate with important mechanisms of clinical disease progression. Such mechanisms appear to intimately link reductions in thalamic iron with higher T2LV and the development of thalamic atrophy, encouraging further research into QSM-derived thalamic susceptibility as a biomarker of disease severity in SPMS

    Brain reserve and physical disability in secondary progressive multiple sclerosis

    Get PDF
    Background The brain reserve hypothesis posits that larger maximal lifetime brain growth (MLBG) may confer protection against physical disability in multiple sclerosis (MS). Larger MLBG as a proxy for brain reserve, has been associated with reduced progression of physical disability in patients with early MS; however, it is unknown whether this association remains once in the secondary progressive phase of MS (SPMS). Our aim was to assess whether larger MLBG is associated with decreased physical disability progression in SPMS. Methods We conducted a post hoc analysis of participants in the MS-Secondary Progressive Multi-Arm Randomisation Trial (NCT01910259), a multicentre randomised placebo-controlled trial of the neuroprotective potential of three agents in SPMS. Physical disability was measured by Expanded Disability Status Scale (EDSS), 9-hole peg test (9HPT) and 25-foot timed walk test (T25FW) at baseline, 48 and 96 weeks. MLBG was estimated by baseline intracranial volume (ICV). Multivariable time-varying Cox regression models were used to investigate the association between MLBG and physical disability progression. Results 383 participants (mean age 54.5 years, 298 female) were followed up over 96 weeks. Median baseline EDSS was 6.0 (range 4.0–6.5). Adjusted for covariates, larger MLBG was associated with a reduced risk of EDSS progression (HR 0.84,95% CI:0.72 to 0.99;p=0.04). MLBG was not independently associated with time to progression as measured by 9HPT or T25FW. Conclusion Larger MLBG is independently associated with physical disability progression over 96 weeks as measured by EDSS in SPMS. This suggests that MLBG as a proxy for brain reserve may continue to confer protection against disability when in the secondary progression phase of MS

    Effect of repurposed simvastatin on disability progression in secondary progressive multiple sclerosis (MS-STAT2): a phase 3, randomised, double-blind, placebo-controlled trial

    Get PDF
    Background Despite the success of immune modulation in the treatment of relapsing multiple sclerosis, disability progression is a major problem driven by multiple mechanisms. Comorbidities (eg, vascular risk) and ageing are thought to augment these neurodegenerative pathologies. In the phase 2b MS-STAT trial of simvastatin (80 mg) versus placebo in secondary progressive multiple sclerosis (SPMS), the adjusted difference in brain atrophy rate between groups was −0·254% per year: a 43% reduction. In this phase 3 MS-STAT2 trial, we aimed to assess the efficacy of simvastatin versus placebo in slowing the progression of disability in SPMS. Methods This phase 3, randomised, double-blind, parallel group, placebo-controlled clinical trial was conducted at 31 neuroscience centres and district general hospitals in the UK. Participants aged 18–65 years with a diagnosis of SPMS and an Expanded Disability Status Scale (EDSS) of between 4·0 and 6·5 were eligible and randomly assigned (1:1) to oral simvastatin (80 mg) or matched placebo for up to 4·5 years, based on a minimisation algorithm within an independent and secure online randomisation service. All participants, site investigators, and the trial coordinating team were masked to treatment allocation. The primary outcome was time to 6-month EDSS confirmed disability progression (an increase of at least 1 point if EDSS score at baseline visit was less than 6·0 or an increase of 0·5 point if EDSS score at baseline visit was 6·0 or more) assessed in all randomly assigned participants (intention-to-treat analysis) without imputation. This study is registered with ClinicalTrials.gov (NCT03387670) and is on the ISRCTN registry (ISRCTN82598726). The study is completed. Findings Between May 10, 2018, and July 26, 2024, 1079 patients were screened for eligibility and 964 participants were randomly assigned, with 482 (50%) in the placebo group and 482 (50%) in the simvastatin group. Of all 964 participants, 704 (73%) were female and 260 (27%) were male, with a mean age of 54 years (SD 7). 173 (36%) of 482 participants in the placebo group and 192 (40%) of 482 participants in the simvastatin group had 6-month confirmed disability progression (adjusted hazard ratio 1·13 [95% CI 0·91 to 1·39], p=0·26). Although no emergent safety issues were seen, there was one serious adverse reaction (rhabdomyolysis) in the simvastatin group. 12 (2%) of 482 participants in the placebo group and five (1%) of 482 participants in the simvastatin group had a cardiovascular serious adverse event. Interpretation The MS-STAT2 trial did not show a treatment effect of simvastatin in slowing disability progression in SPMS. Simvastatin use in multiple sclerosis should be confined to existing vascular indications. Funding National Institute for Health and Care Research Health Technology Assessment Programme, UK Multiple Sclerosis Society, and the US National Multiple Sclerosis Society

    Colournamer, a synthetic observer for colour communication

    Get PDF
    Colour specification is not only the domain of technologists but is also an important process for anyone who needs to communicate about colour in the multilingual Internet environment. We have developed an online application Colournamer, a synthetic observer ‘trained’ by the participants’ responses, to facilitate colour communication between different cultures. At present it supports English, Greek, Spanish and German
    corecore