1,788 research outputs found
Fabrication and transport critical currents of multifilamentary MgB2/Fe wires and tapes
Multifilamentary MgB2/Fe wires and tapes with high transport critical current
densities have been fabricated using a straightforward powder-in-tube (PIT)
process. After annealing, we measured transport jc values up to 1.1 * 105 A/cm2
at 4.2 K and in a field of 2 T in a MgB2/Fe square wire with 7 filaments
fabricated by two-axial rolling, and up to 5 * 104 A/cm2 at 4.2 K in 1 T in a
MgB2/Fe tape with 7 filaments. For higher currents these multifilamentary wires
and tapes quenched due to insufficient thermal stability of filaments. Both the
processing routes and deformation methods were found to be important factors
for fabricating multifilamentary MgB2 wires and tapes with high transport jc
values.Comment: 13 pages, 7 figure
On the sample size dependence of the critical current density in MgB superconductors
Sample size dependent critical current density has been observed in magnesium
diboride superconductors. At high fields, larger samples provide higher
critical current densities, while at low fields, larger samples give rise to
lower critical current densities. The explanation for this surprising result is
proposed in this study based on the electric field generated in the
superconductors. The dependence of the current density on the sample size has
been derived as a power law ( is the factor
characterizing curve ). This dependence provides one with
a new method to derive the factor and can also be used to determine the
dependence of the activation energy on the current density.Comment: Revtex, 4 pages, 5 figure
Recommended from our members
Robotic Tentacles with Three-Dimensional Mobility Based on Flexible Elastomers
Soft robotic tentacles that move in three dimensions upon pressurization are fabricated by composing flexible elastomers with different tensile strengths using soft lithographic molding. These actuators are able to grip complex shapes and manipulate delicate objects. Embedding functional components into these actuators (for example, a needle for delivering fluid, a video camera, and a suction cup) extends their capabilities.Engineering and Applied Science
Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO4 electrodes during charge/discharge cycling of lithium batteries
The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate
Modeling of Strength Properties of Structural Particleboard
The strength properties of structural particleboard are critically important factors. In designing a particular particleboard, a series of experiments can be run to determine the effect of a particular combination of factors. Modeling could be used as an alternative approach. Simulation modeling is one of the modeling techniques that can be fast and cost-effective. Structural particleboard was modeled in this study as a multilayer system that consists of a number of thin and uniform layers that exhibit different strength properties between layers, but the same properties within each layer. The effective modulus of elasticity of a board is a resultant of the combined effect of the modulus of all the layers. The modulus of rupture was obtained by determining the ultimate force or maximum moment during the simulated bending test. Internal bond strength was modeled using a modified regression equation
- …
