637 research outputs found
Measurement of the Luminosity in the ZEUS Experiment at HERA II
The luminosity in the ZEUS detector was measured using photons from electron
bremsstrahlung. In 2001 the HERA collider was upgraded for operation at higher
luminosity. At the same time the luminosity-measuring system of the ZEUS
experiment was modified to tackle the expected higher photon rate and
synchrotron radiation. The existing lead-scintillator calorimeter was equipped
with radiation hard scintillator tiles and shielded against synchrotron
radiation. In addition, a magnetic spectrometer was installed to measure the
luminosity independently using photons converted in the beam-pipe exit window.
The redundancy provided a reliable and robust luminosity determination with a
systematic uncertainty of 1.7%. The experimental setup, the techniques used for
luminosity determination and the estimate of the systematic uncertainty are
reported.Comment: 25 pages, 11 figure
Multijet production in neutral current deep inelastic scattering at HERA and determination of α_{s}
Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 5 GeV and –1 < η_{LAB}^{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant α_{s} (M_{z}), determined from the ratio of the trijet to dijet cross sections, is α_{s} (M_{z}) = 0.1179 ± 0.0013 (stat.)_{-0.0046}^{+0.0028}(exp.)_{-0.0046}^{+0.0028}(th.)
Jet production in charged current deep inelastic e⁺p scatteringat HERA
The production rates and substructure of jets have been studied in charged current deep inelastic e⁺p scattering for Q² > 200 GeV² with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb⁻¹. Inclusive jet cross sections are presented for jets with transverse energies E_{T}^{jet} > 5 GeV. Measurements of the mean subjet multiplicity, 〈n_{sbj}〉, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations are compared to the measurements. The value of α_{s} (M_{z}), determined from 〈n_{sbj}〉 at y_{cut} = 10⁻² for jets with 25 < E_{T}^{jet} < 119 GeV, is α_{s} (M_{z}) = 0.1202 ± 0.0052 (stat.)_{-0.0019}^{+0.0060} (syst.)_{-0.0053}^{+0.0065} (th.). The mean subjet multiplicity as a function of Q² is found to be consistent with that measured in NC DIS
The dependence of dijet production on photon virtuality in ep collisions at HERA
The dependence of dijet production on the virtuality of the exchanged photon,
Q^2, has been studied by measuring dijet cross sections in the range 0 < Q^2 <
2000 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of
38.6 pb^-1.
Dijet cross sections were measured for jets with transverse energy E_T^jet >
7.5 and 6.5 GeV and pseudorapidities in the photon-proton centre-of-mass frame
in the range -3 < eta^jet <0. The variable xg^obs, a measure of the photon
momentum entering the hard process, was used to enhance the sensitivity of the
measurement to the photon structure. The Q^2 dependence of the ratio of low- to
high-xg^obs events was measured.
Next-to-leading-order QCD predictions were found to generally underestimate
the low-xg^obs contribution relative to that at high xg^obs. Monte Carlo models
based on leading-logarithmic parton-showers, using a partonic structure for the
photon which falls smoothly with increasing Q^2, provide a qualitative
description of the data.Comment: 35 pages, 6 eps figures, submitted to Eur.Phys.J.
Observation of Scaling Violations in Scaled Momentum Distributions at HERA
Charged particle production has been measured in deep inelastic scattering
(DIS) events over a large range of and using the ZEUS detector. The
evolution of the scaled momentum, , with in the range 10 to 1280
, has been investigated in the current fragmentation region of the Breit
frame. The results show clear evidence, in a single experiment, for scaling
violations in scaled momenta as a function of .Comment: 21 pages including 4 figures, to be published in Physics Letters B.
Two references adde
Dissociation of virtual photons in events with a leading proton at HERA
The ZEUS detector has been used to study dissociation of virtual photons in
events with a leading proton, gamma^* p -> X p, in e^+p collisions at HERA. The
data cover photon virtualities in two ranges, 0.03<Q^2<0.60 GeV^2 and 2<Q^2<100
GeV^2, with M_X>1.5 GeV, where M_X is the mass of the hadronic final state, X.
Events were required to have a leading proton, detected in the ZEUS leading
proton spectrometer, carrying at least 90% of the incoming proton energy. The
cross section is presented as a function of t, the squared four-momentum
transfer at the proton vertex, Phi, the azimuthal angle between the positron
scattering plane and the proton scattering plane, and Q^2. The data are
presented in terms of the diffractive structure function, F_2^D(3). A
next-to-leading-order QCD fit to the higher-Q^2 data set and to previously
published diffractive charm production data is presented
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Measurement of Jet Shapes in Photoproduction at HERA
The shape of jets produced in quasi-real photon-proton collisions at
centre-of-mass energies in the range GeV has been measured using the
hadronic energy flow. The measurement was done with the ZEUS detector at HERA.
Jets are identified using a cone algorithm in the plane with a
cone radius of one unit. Measured jet shapes both in inclusive jet and dijet
production with transverse energies GeV are presented. The jet
shape broadens as the jet pseudorapidity () increases and narrows
as increases. In dijet photoproduction, the jet shapes have been
measured separately for samples dominated by resolved and by direct processes.
Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct
processes describe well the measured jet shapes except for the inclusive
production of jets with high and low . The observed
broadening of the jet shape as increases is consistent with the
predicted increase in the fraction of final state gluon jets.Comment: 29 pages including 9 figure
Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA
Correlations between charged particles in deep inelastic ep scattering have
been studied in the Breit frame with the ZEUS detector at HERA using an
integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in
terms of the angular separation between current-region particles within a cone
centred around the virtual photon axis. Long-range correlations between the
current and target regions have also been measured. The data support
predictions for the scaling behaviour of the angular correlations at high Q2
and for anti-correlations between the current and target regions over a large
range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations
and Monte Carlo models correctly describe the trends of the data at high Q2,
but show quantitative discrepancies. The data show differences between the
correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
Plastisol Foaming Process. Decomposition of the Foaming Agent, Polymer Behavior in the Corresponding Temperature Range and Resulting Foam Properties
The decomposition of azodicarbonamide, used as foaming agent in PVC - plasticizer (1/1) plastisols was studied by DSC. Nineteen different plasticizers, all belonging to the ester family, two being polymeric (polyadipates), were compared. The temperature of maximum decomposition rate (in anisothermal regime at 5 K min-1 scanning rate), ranges between 434 and 452 K. The heat of decomposition ranges between 8.7 and 12.5 J g -1. Some trends of variation of these parameters appear significant and are discussed in terms of solvent (matrix) and viscosity effects on the decomposition reactions. The shear modulus at 1 Hz frequency was determined at the temperature of maximum rate of foaming agent decomposition, and differs significantly from a sample to another. The foam density was determined at ambient temperature and the volume fraction of bubbles was used as criterion to judge the efficiency of the foaming process. The results reveal the existence of an optimal shear modulus of the order of 2 kPa that corresponds roughly to plasticizer molar masses of the order of 450 ± 50 g mol-1. Heavier plasticizers, especially polymeric ones are too difficult to deform. Lighter plasticizers such as diethyl phthalate (DEP) deform too easily and presumably facilitate bubble collapse
- …
