837 research outputs found

    Effective dynamics of the closed loop quantum cosmology

    Full text link
    In this paper we study dynamics of the closed FRW model with holonomy corrections coming from loop quantum cosmology. We consider models with a scalar field and cosmological constant. In case of the models with cosmological constant and free scalar field, dynamics reduce to 2D system and analysis of solutions simplify. If only free scalar field is included then universe undergoes non-singular oscillations. For the model with cosmological constant, different behaviours are obtained depending on the value of Λ\Lambda. If the value of Λ\Lambda is sufficiently small, bouncing solutions with asymptotic de Sitter stages are obtained. However if the value of Λ\Lambda exceeds critical value Λc=3mPl22πγ321mPl2\Lambda_{\text{c}} =\frac{\sqrt{3}m^2_{\text{Pl}}}{2\pi\gamma^3} \simeq 21 m^2_{\text{Pl}} then solutions become oscillatory. Subsequently we study models with a massive scalar field. We find that this model possess generic inflationary attractors. In particular field, initially situated in the bottom of the potential, is driven up during the phase of quantum bounce. This subsequently leads to the phase of inflation. Finally we find that, comparing with the flat case, effects of curvature do not change qualitatively dynamics close to the phase of bounce. Possible effects of inverse volume corrections are also briefly discussed.Comment: 18 pages, 11 figure

    Transcending Big Bang in Loop Quantum Cosmology: Recent Advances

    Get PDF
    We discuss the way non-perturbative quantization of cosmological spacetimes in loop quantum cosmology provides insights on the physics of Planck scale and the resolution of big bang singularity. In recent years, rigorous examination of mathematical and physical aspects of the quantum theory has led to a consistent quantization which is consistent and physically viable and some early ideas have been ruled out. The latter include so called `physical effects' originating from modifications to inverse scale factors in the flat models. The singularity resolution is understood to originate from the non-local nature of curvature in the quantum theory and the underlying polymer representation. Using an exactly solvable model various insights have been gained. The model predicts a generic occurrence of bounce for states in the physical Hilbert space and a supremum for the spectrum of the energy density operator. It also provides answers to the growth of fluctuations, showing that semi-classicality is preserved to an amazing degree across the bounce.Comment: Invited plenary talk at the Sixth International Conference on Gravitation and Cosmology, IUCAA (Pune). 13 pages, 3 figure

    Classical Setting and Effective Dynamics for Spinfoam Cosmology

    Full text link
    We explore how to extract effective dynamics from loop quantum gravity and spinfoams truncated to a finite fixed graph, with the hope of modeling symmetry-reduced gravitational systems. We particularize our study to the 2-vertex graph with N links. We describe the canonical data using the recent formulation of the phase space in terms of spinors, and implement a symmetry-reduction to the homogeneous and isotropic sector. From the canonical point of view, we construct a consistent Hamiltonian for the model and discuss its relation with Friedmann-Robertson-Walker cosmologies. Then, we analyze the dynamics from the spinfoam approach. We compute exactly the transition amplitude between initial and final coherent spin networks states with support on the 2-vertex graph, for the choice of the simplest two-complex (with a single space-time vertex). The transition amplitude verifies an exact differential equation that agrees with the Hamiltonian constructed previously. Thus, in our simple setting we clarify the link between the canonical and the covariant formalisms.Comment: 38 pages, v2: Link with discretized loop quantum gravity made explicit and emphasize

    Non-singular Universes a la Palatini

    Get PDF
    It has recently been shown that f(R) theories formulated in the Palatini variational formalism are able to avoid the big bang singularity yielding instead a bouncing solution. The mechanism responsible for this behavior is similar to that observed in the effective dynamics of loop quantum cosmology and an f(R) theory exactly reproducing that dynamics has been found. I will show here that considering more general actions, with quadratic contributions of the Ricci tensor, results in a much richer phenomenology that yields bouncing solutions even in anisotropic (Bianchi I) scenarios. Some implications of these results are discussed.Comment: 4 pages, no figures. Contribution to the Spanish Relativity Meeting (ERE2010), 6-10 Sept. Granada, Spai

    Digital Gender Disidentifications: Beyond the Subversion Versus Hegemony Dichotomy and Toward Everyday Gender Practices

    Get PDF
    The 21st century has seen the emergence of new practices of gender diversity that eschew a rigid gender binary and proliferate new gender labels, including “nonbinary,” “genderfluid,” and “agender.” Digital media have played a crucial role in this process as the new labels often originate and become popular in online social networks. Academic discussions on digital gender diversity suggest that the new labels either resist or reproduce the dominant gender ideology. I contribute to these discussions by challenging the subversion versus hegemony dichotomy, and by demonstrating a wide spectrum of practices of gender diversity. Drawing on six interviews with gender-diverse migrants and building on the concept of disidentification, I update the concept to include increasingly digital societies and new gender practices, challenge the dichotomous thinking about digital gender diversity, and stress the importance of cultural and media contexts for understanding how new gender labels are being practiced in everyday life

    From queer to gay to Queer.pl : the names we dare to speak in Poland

    Get PDF

    Numerical calculations of effective elastic properties of two cellular structures

    Full text link
    Young's moduli of regular two-dimensional truss-like and eye-shape-like structures are simulated by using the finite element method. The structures are the idealizations of soft polymeric materials used in the electret applications. In the simulations size of the representative smallest units are varied, which changes the dimensions of the cell-walls in the structures. A power-law expression with a quadratic as the exponential term is proposed for the effective Young's moduli of the systems as a function of the solid volume fraction. The data is divided into three regions with respect to the volume fraction; low, intermediate and high concentrations. The parameters of the proposed power-law expression in each region are later represented as a function of the structural parameters, unit-cell dimensions. The presented expression can be used to predict structure/property relationship in materials with similar cellular structures. It is observed that the structures with volume fractions of solid higher than 0.15 exhibit the importance of the cell-wall thickness contribution in the elastic properties. The cell-wall thickness is the most significant factor to predict the effective Young's modulus of regular cellular structures at high volume fractions of solid. At lower concentrations of solid, eye-like structure yields lower Young's modulus than the truss-like structure with the similar anisotropy. Comparison of the numerical results with those of experimental data of poly(propylene) show good aggreement regarding the influence of cell-wall thickness on elastic properties of thin cellular films.Comment: 7 figures and 2 table

    Loop Quantum Gravity and the The Planck Regime of Cosmology

    Full text link
    The very early universe provides the best arena we currently have to test quantum gravity theories. The success of the inflationary paradigm in accounting for the observed inhomogeneities in the cosmic microwave background already illustrates this point to a certain extent because the paradigm is based on quantum field theory on the curved cosmological space-times. However, this analysis excludes the Planck era because the background space-time satisfies Einstein's equations all the way back to the big bang singularity. Using techniques from loop quantum gravity, the paradigm has now been extended to a self-consistent theory from the Planck regime to the onset of inflation, covering some 11 orders of magnitude in curvature. In addition, for a narrow window of initial conditions, there are departures from the standard paradigm, with novel effects, such as a modification of the consistency relation involving the scalar and tensor power spectra and a new source for non-Gaussianities. Thus, the genesis of the large scale structure of the universe can be traced back to quantum gravity fluctuations \emph{in the Planck regime}. This report provides a bird's eye view of these developments for the general relativity community.Comment: 23 pages, 4 figures. Plenary talk at the Conference: Relativity and Gravitation: 100 Years after Einstein in Prague. To appear in the Proceedings to be published by Edition Open Access. Summarizes results that appeared in journal articles [2-13

    Dynamics for a 2-vertex Quantum Gravity Model

    Get PDF
    We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N) invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.Comment: 28 pages, v2: typos correcte

    Numerical loop quantum cosmology: an overview

    Get PDF
    A brief review of various numerical techniques used in loop quantum cosmology and results is presented. These include the way extensive numerical simulations shed insights on the resolution of classical singularities, resulting in the key prediction of the bounce at the Planck scale in different models, and the numerical methods used to analyze the properties of the quantum difference operator and the von Neumann stability issues. Using the quantization of a massless scalar field in an isotropic spacetime as a template, an attempt is made to highlight the complementarity of different methods to gain understanding of the new physics emerging from the quantum theory. Open directions which need to be explored with more refined numerical methods are discussed.Comment: 33 Pages, 4 figures. Invited contribution to appear in Classical and Quantum Gravity special issue on Non-Astrophysical Numerical Relativit
    corecore