837 research outputs found
Effective dynamics of the closed loop quantum cosmology
In this paper we study dynamics of the closed FRW model with holonomy
corrections coming from loop quantum cosmology. We consider models with a
scalar field and cosmological constant. In case of the models with cosmological
constant and free scalar field, dynamics reduce to 2D system and analysis of
solutions simplify. If only free scalar field is included then universe
undergoes non-singular oscillations. For the model with cosmological constant,
different behaviours are obtained depending on the value of . If the
value of is sufficiently small, bouncing solutions with asymptotic de
Sitter stages are obtained. However if the value of exceeds critical
value then solutions become oscillatory. Subsequently we study
models with a massive scalar field. We find that this model possess generic
inflationary attractors. In particular field, initially situated in the bottom
of the potential, is driven up during the phase of quantum bounce. This
subsequently leads to the phase of inflation. Finally we find that, comparing
with the flat case, effects of curvature do not change qualitatively dynamics
close to the phase of bounce. Possible effects of inverse volume corrections
are also briefly discussed.Comment: 18 pages, 11 figure
Transcending Big Bang in Loop Quantum Cosmology: Recent Advances
We discuss the way non-perturbative quantization of cosmological spacetimes
in loop quantum cosmology provides insights on the physics of Planck scale and
the resolution of big bang singularity. In recent years, rigorous examination
of mathematical and physical aspects of the quantum theory has led to a
consistent quantization which is consistent and physically viable and some
early ideas have been ruled out. The latter include so called `physical
effects' originating from modifications to inverse scale factors in the flat
models. The singularity resolution is understood to originate from the
non-local nature of curvature in the quantum theory and the underlying polymer
representation. Using an exactly solvable model various insights have been
gained. The model predicts a generic occurrence of bounce for states in the
physical Hilbert space and a supremum for the spectrum of the energy density
operator. It also provides answers to the growth of fluctuations, showing that
semi-classicality is preserved to an amazing degree across the bounce.Comment: Invited plenary talk at the Sixth International Conference on
Gravitation and Cosmology, IUCAA (Pune). 13 pages, 3 figure
Classical Setting and Effective Dynamics for Spinfoam Cosmology
We explore how to extract effective dynamics from loop quantum gravity and
spinfoams truncated to a finite fixed graph, with the hope of modeling
symmetry-reduced gravitational systems. We particularize our study to the
2-vertex graph with N links. We describe the canonical data using the recent
formulation of the phase space in terms of spinors, and implement a
symmetry-reduction to the homogeneous and isotropic sector. From the canonical
point of view, we construct a consistent Hamiltonian for the model and discuss
its relation with Friedmann-Robertson-Walker cosmologies. Then, we analyze the
dynamics from the spinfoam approach. We compute exactly the transition
amplitude between initial and final coherent spin networks states with support
on the 2-vertex graph, for the choice of the simplest two-complex (with a
single space-time vertex). The transition amplitude verifies an exact
differential equation that agrees with the Hamiltonian constructed previously.
Thus, in our simple setting we clarify the link between the canonical and the
covariant formalisms.Comment: 38 pages, v2: Link with discretized loop quantum gravity made
explicit and emphasize
Non-singular Universes a la Palatini
It has recently been shown that f(R) theories formulated in the Palatini
variational formalism are able to avoid the big bang singularity yielding
instead a bouncing solution. The mechanism responsible for this behavior is
similar to that observed in the effective dynamics of loop quantum cosmology
and an f(R) theory exactly reproducing that dynamics has been found. I will
show here that considering more general actions, with quadratic contributions
of the Ricci tensor, results in a much richer phenomenology that yields
bouncing solutions even in anisotropic (Bianchi I) scenarios. Some implications
of these results are discussed.Comment: 4 pages, no figures. Contribution to the Spanish Relativity Meeting
(ERE2010), 6-10 Sept. Granada, Spai
Digital Gender Disidentifications: Beyond the Subversion Versus Hegemony Dichotomy and Toward Everyday Gender Practices
The 21st century has seen the emergence of new practices of gender diversity that eschew a rigid gender binary and proliferate new gender labels, including “nonbinary,” “genderfluid,” and “agender.” Digital media have played a crucial role in this process as the new labels often originate and become popular in online social networks. Academic discussions on digital gender diversity suggest that the new labels either resist or reproduce the dominant gender ideology. I contribute to these discussions by challenging the subversion versus hegemony dichotomy, and by demonstrating a wide spectrum of practices of gender diversity. Drawing on six interviews with gender-diverse migrants and building on the concept of disidentification, I update the concept to include increasingly digital societies and new gender practices, challenge the dichotomous thinking about digital gender diversity, and stress the importance of cultural and media contexts for understanding how new gender labels are being practiced in everyday life
Numerical calculations of effective elastic properties of two cellular structures
Young's moduli of regular two-dimensional truss-like and eye-shape-like
structures are simulated by using the finite element method. The structures are
the idealizations of soft polymeric materials used in the electret
applications. In the simulations size of the representative smallest units are
varied, which changes the dimensions of the cell-walls in the structures. A
power-law expression with a quadratic as the exponential term is proposed for
the effective Young's moduli of the systems as a function of the solid volume
fraction. The data is divided into three regions with respect to the volume
fraction; low, intermediate and high concentrations. The parameters of the
proposed power-law expression in each region are later represented as a
function of the structural parameters, unit-cell dimensions. The presented
expression can be used to predict structure/property relationship in materials
with similar cellular structures. It is observed that the structures with
volume fractions of solid higher than 0.15 exhibit the importance of the
cell-wall thickness contribution in the elastic properties. The cell-wall
thickness is the most significant factor to predict the effective Young's
modulus of regular cellular structures at high volume fractions of solid. At
lower concentrations of solid, eye-like structure yields lower Young's modulus
than the truss-like structure with the similar anisotropy. Comparison of the
numerical results with those of experimental data of poly(propylene) show good
aggreement regarding the influence of cell-wall thickness on elastic properties
of thin cellular films.Comment: 7 figures and 2 table
Loop Quantum Gravity and the The Planck Regime of Cosmology
The very early universe provides the best arena we currently have to test
quantum gravity theories. The success of the inflationary paradigm in
accounting for the observed inhomogeneities in the cosmic microwave background
already illustrates this point to a certain extent because the paradigm is
based on quantum field theory on the curved cosmological space-times. However,
this analysis excludes the Planck era because the background space-time
satisfies Einstein's equations all the way back to the big bang singularity.
Using techniques from loop quantum gravity, the paradigm has now been extended
to a self-consistent theory from the Planck regime to the onset of inflation,
covering some 11 orders of magnitude in curvature. In addition, for a narrow
window of initial conditions, there are departures from the standard paradigm,
with novel effects, such as a modification of the consistency relation
involving the scalar and tensor power spectra and a new source for
non-Gaussianities. Thus, the genesis of the large scale structure of the
universe can be traced back to quantum gravity fluctuations \emph{in the Planck
regime}. This report provides a bird's eye view of these developments for the
general relativity community.Comment: 23 pages, 4 figures. Plenary talk at the Conference: Relativity and
Gravitation: 100 Years after Einstein in Prague. To appear in the Proceedings
to be published by Edition Open Access. Summarizes results that appeared in
journal articles [2-13
Dynamics for a 2-vertex Quantum Gravity Model
We use the recently introduced U(N) framework for loop quantum gravity to
study the dynamics of spin network states on the simplest class of graphs: two
vertices linked with an arbitrary number N of edges. Such graphs represent two
regions, in and out, separated by a boundary surface. We study the algebraic
structure of the Hilbert space of spin networks from the U(N) perspective. In
particular, we describe the algebra of operators acting on that space and
discuss their relation to the standard holonomy operator of loop quantum
gravity. Furthermore, we show that it is possible to make the restriction to
the isotropic/homogeneous sector of the model by imposing the invariance under
a global U(N) symmetry. We then propose a U(N) invariant Hamiltonian operator
and study the induced dynamics. Finally, we explore the analogies between this
model and loop quantum cosmology and sketch some possible generalizations of
it.Comment: 28 pages, v2: typos correcte
Numerical loop quantum cosmology: an overview
A brief review of various numerical techniques used in loop quantum cosmology
and results is presented. These include the way extensive numerical simulations
shed insights on the resolution of classical singularities, resulting in the
key prediction of the bounce at the Planck scale in different models, and the
numerical methods used to analyze the properties of the quantum difference
operator and the von Neumann stability issues. Using the quantization of a
massless scalar field in an isotropic spacetime as a template, an attempt is
made to highlight the complementarity of different methods to gain
understanding of the new physics emerging from the quantum theory. Open
directions which need to be explored with more refined numerical methods are
discussed.Comment: 33 Pages, 4 figures. Invited contribution to appear in Classical and
Quantum Gravity special issue on Non-Astrophysical Numerical Relativit
- …
