16,096 research outputs found
Signatures of the Milky Way's Dark Disk in Current and Future Experiments
In hierarchical structure formation models of disk galaxies, a dark matter
disk forms as massive satellites are preferentially dragged into the disk-plane
where they dissolve. Here, we quantify the importance of this dark disk for
direct and indirect dark matter detection. The low velocity of the dark disk
with respect to the Earth enhances detection rates in direct detection
experiments at low recoil energy. For WIMP masses M_{WIMP} >~ 50 GeV, the
detection rate increases by up to a factor of 3 in the 5 - 20 keV recoil energy
range. Comparing this with rates at higher energy is sensitive to M_{WIMP},
providing stronger mass constraints particularly for M_{WIMP}>~100 GeV. The
annual modulation signal is significantly boosted by the dark disk and the
modulation phase is shifted by ~3 weeks relative to the dark halo. The
variation of the observed phase with recoil energy determines M_{WIMP}, once
the dark disk properties are fixed by future astronomical surveys. The low
velocity of the particles in the dark disk with respect to the solar system
significantly enhances the capture rate of WIMPs in the Sun, leading to an
increased flux of neutrinos from the Sun which could be detected in current and
future neutrino telescopes. The dark disk contribution to the muon flux from
neutrino back conversion at the Earth is increased by a factor of ~5 compared
to the SHM, for rho_d/rho_h=0.5.Comment: 5 pages, 7 figures, To appear in the proceedings of Identification of
Dark Matter 2008 (IDM2008), Stockholm, 18-22 August 2008; corrected one
referenc
Fractionalization and confinement in the U(1) and gauge theories of strongly correlated systems
Recently, we have elucidated the physics of electron fractionalization in
strongly interacting electron systems using a gauge theory formulation.
Here we discuss the connection with the earlier U(1) gauge theory approaches
based on the slave boson mean field theory. In particular, we identify the
relationship between the holons and Spinons of the slave-boson theory and the
true physical excitations of the fractionalized phases that are readily
described in the approach.Comment: 4 page
Recommended from our members
Dust-related interannual and intraseasonal variability of Martian climate using data assimilation
Data assimilation has been applied in several studies [Montabone et al., 2005; Lewis et al., 2005; Montabone et al., 2006a; Montabone et al., 2006b; Lewis et al., 2007; Wilson et al., 2008; Rogberg et al. 2010] as an effective tool with which to analyze spacecraft observations and phenomena (e.g., atmospheric tides, transient wave behavior, effects of clouds in the tropics, weather predictability, etc.) in the Martian atmosphere. A data assimilation scheme combined with a Martian Global Circulation Model (GCM) is able to provide a complete, balanced, four-dimensional solution consistent with observations.
The GCM we use [Forget et al., 1999] combines a spectral dynamical solver and a tracer transport scheme developed in UK and Laboratoire de Météorologie Dynamique (LMD; Paris, France) physics package developed in collaboration with Oxford, The Open University and Instituto de Astrofisica de Andalucia (Granada, Spain).
Here, we describe and discuss dust-related interannual and intraseasonal variability of the Martian climate. The results shown in this study come from a reanalysis using the Martian GCM with data assimilation scheme which assimilates Mars Global Surveyor/ Thermal Emission Spectrometer (MGS/TES) retrievals of temperature and column dust opacity. The detailed model setup was described by Montabone et al. [2006a], and the data assimilation scheme employed in this study was introduced in the work of Lewis et al. [2007]
Recommended from our members
Regional and global dust storms on Mars investigated using data assimilation
Recommended from our members
Super-rotating jets in a re-analysis of the martian atmosphere
Strong westerly, prograde jets have been identified in the martian atmosphere between about 10–20 km altitude throughout much of the year in a Mars Global Circulation Model (MGCM) study [2]. The development of data assimilation techniques for Mars [3, 5] now permits the analysis of super-rotation in less highly idealized cases using an atmospheric reanalysis, as would be done for the Earth. This paper reviews recent atmospheric reanalyses, in order to validate previous modeling results, to quantify jet amplitudes and to diagnose possible mechanisms supplying angular momentum to the jets.
[2] Lewis, S. R., and Read, P. L.: Equatorial jets in the dusty martian atmosphere, J. Geophys. Res., Vol. 108 (E4), 5034, pp. 1–15, 2003.
[3] Lewis, S. R., Read, P. L., Conrath, B. J., Pearl, J. C., and Smith, M. D.: Assimilation of Thermal Emission Spectrometer atmospheric data during the Mars Global Surveyor aerobraking period, Icarus, Vol. 192 (2), pp. 327–347, 2007.
[5] Montabone, L., Lewis, S. R., Read, P. L., Hinson, D. P., Validation of Martian meteorological data assimilation for MGS/TES using radio occultation measurements, Icarus Vol. 185 (1), pp. 113–132, 2006
Nitrification-denitrification in WSP: a mechanism for permanent nitrogen removal in maturation ponds
A pilot-scale primary maturation pond was spiked with 15N-labelled ammonia (15NH4Cl) and 15N labelled nitrite (Na15NO2), in order to improve current understanding of the dynamics of inorganic nitrogen transformations and removal in WSP systems. Stable isotope analysis of δ15N showed that
nitrification could be considered as an intermediate step in WSP, which is masked by simultaneous denitrification, under conditions of low algal activity. Molecular microbiology analysis showed that denitrification can be considered a feasible mechanism for permanent nitrogen removal in WSP, which may be supported either by ammonia-oxidising bacteria (AOB) or by methanotrophs, in addition to nitrite-oxidising bacteria (NOB). However, the relative supremacy of the denitrification process over other nitrogen removal mechanisms (e.g., biological uptake) depends upon phytoplanktonic activity
Numerical study of spin quantum Hall transitions in superconductors with broken time-reversal symmetry
We present results of numerical studies of spin quantum Hall transitions in
disordered superconductors, in which the pairing order parameter breaks
time-reversal symmetry. We focus mainly on p-wave superconductors in which one
of the spin components is conserved. The transport properties of the system are
studied by numerically diagonalizing pairing Hamiltonians on a lattice, and by
calculating the Chern and Thouless numbers of the quasiparticle states. We find
that in the presence of disorder, (spin-)current carrying states exist only at
discrete critical energies in the thermodynamic limit, and the spin-quantum
Hall transition driven by an external Zeeman field has the same critical
behavior as the usual integer quantum Hall transition of non-interacting
electrons. These critical energies merge and disappear as disorder strength
increases, in a manner similar to those in lattice models for integer quantum
Hall transition.Comment: 9 pages, 9 figure
Correlation among Cirrus Ice Content, Water Vapor and Temperature in the TTL as Observed by CALIPSO and Aura-MLS
Water vapor in the tropical tropopause layer (TTL) has a local radiative cooling effect. As a source for ice in cirrus clouds, however, it can also indirectly produce infrared heating. Using NASA A-Train satellite measurements of CALIPSO and Aura/MLS we calculated the correlation of water vapor, ice water content and temperature in the TTL. We find that temperature strongly controls water vapor (correlation r =0.94) and cirrus clouds at 100 hPa (r = 0.91). Moreover we observe that the cirrus seasonal cycle is highly (r =0.9) anticorrelated with the water vapor variation in the TTL, showing higher cloud occurrence during December-January-February. We further investigate the anticorrelation on a regional scale and find that the strong anticorrelation occurs generally in the ITCZ (Intertropical Convergence Zone). The seasonal cycle of the cirrus ice water content is also highly anticorrelated to water vapor (r = 0.91) and our results support the hypothesis that the total water at 100 hPa is roughly constant. Temperature acts as a main regulator for balancing the partition between water vapor and cirrus clouds. Thus, to a large extent, the depleting water vapor in the TTL during DJF is a manifestation of cirrus formation
Intrinsic and extrinsic geometries of a tidally deformed black hole
A description of the event horizon of a perturbed Schwarzschild black hole is
provided in terms of the intrinsic and extrinsic geometries of the null
hypersurface. This description relies on a Gauss-Codazzi theory of null
hypersurfaces embedded in spacetime, which extends the standard theory of
spacelike and timelike hypersurfaces involving the first and second fundamental
forms. We show that the intrinsic geometry of the event horizon is invariant
under a reparameterization of the null generators, and that the extrinsic
geometry depends on the parameterization. Stated differently, we show that
while the extrinsic geometry depends on the choice of gauge, the intrinsic
geometry is gauge invariant. We apply the formalism to solutions to the vacuum
field equations that describe a tidally deformed black hole. In a first
instance we consider a slowly-varying, quadrupolar tidal field imposed on the
black hole, and in a second instance we examine the tide raised during a close
parabolic encounter between the black hole and a small orbiting body.Comment: 27 pages, 4 figure
- …
