1,045 research outputs found
Size effects in multiferroic BiFeO3 nanodots: A first-principles-based study
An effective Hamiltonian scheme is developed to investigate structural and
magnetic properties of BiFeO3 nanodots under short-circuit-like electrical
boundary conditions. Various striking effects are discovered. Examples include
(a) scaling laws involving the inverse of the dots' size for the magnetic and
electric transition temperatures; (b) the washing out of some structural phases
present in the bulk via size effects; (c) the possibility of tailoring the
difference between the Neel and Curie temperatures, by playing with the size
and electrical boundary conditions; and (d) an universal critical thickness of
the order of 1.6 nm below which the dots do not possess any long-range ordering
for the electrical and magnetic dipoles, as well as, for the oxygen octahedral
tiltings.Comment: 3 figure
Role of surface microgeometries on electron escape probability and secondary electron yield of metal surfaces
The influence of microgeometries on the Secondary Electron Yield (SEY) of surfaces is investigated. Laser written structures of different aspect ratio (height to width) on a copper surface tuned the SEY of the surface and reduced its value to less than unity. The aspect ratio of microstructures was methodically controlled by varying the laser parameters. The results obtained corroborate a recent theoretical model of SEY reduction as a function of the aspect ratio of microstructures. Nanostructures - which are formed inside the microstructures during the interaction with the laser beam - provided further reduction in SEY comparable to that obtained in the simulation of structures which were coated with an absorptive layer suppressing secondary electron emission
First beam test of Laser Engineered Surface Structures (LESS) at cryogenic temperature in CERN SPS accelerator
Electron cloud mitigation is an essential requirement for accelerators of positive particles with high intensity beams to guarantee beam stability and limited heat load in cryogenic systems. Laser Engineered Surface Structures (LESS) are being considered, within the High Luminosity upgrade of the LHC collider at CERN (HL-LHC), as an option to reduce the Secondary Electron Yield (SEY) of the surfaces facing the beam, thus suppressing the elec-tron cloud phenomenon. As part of this study, a 2.2 m long Beam Screen (BS) with LESS has been tested at cryogenic temperature in the COLD bore EXperiment (COLDEX) facility in the SPS accelerator at CERN. In this paper, we describe the manufacturing procedure of the beam screen, the employed laser treatment technique and discuss our first observations in COLDEX confirming electron cloud suppression.Electron cloud mitigation is an essential requirement for accelerators of positive particles with high intensity beams to guarantee beam stability and limited heat load in cryogenic systems. Laser Engineered Surface Structures (LESS) are being considered, within the High Luminosity upgrade of the LHC collider at CERN (HL-LHC), as an option to reduce the Secondary Electron Yield (SEY) of the surfaces facing the beam, thus suppressing the electron cloud phenomenon. As part of this study, a 2.2 m long Beam Screen (BS) with LESS has been tested at cryogenic temperature in the COLD bore EXperiment (COLDEX) facility in the SPS accelerator at CERN. In this paper, we describe the manufacturing procedure of the beam screen, the employed laser treatment technique and discuss our first observations in COLDEX confirming electron cloud suppression
Characterization of a viable, noninverting herpes simplex virus 1 genome derived by insertion and deletion of sequences at the junction of components L and S.
Exocytosis of catecholamine (CA)-containing and CA-free granules in chromaffin cells.
Recent evidence suggests that endocytosis in neuroendocrine cells and neurons can be tightly coupled to exocytosis, allowing rapid retrieval from the plasma membrane of fused vesicles for future use. This can be a much faster mechanism for membrane recycling than classical clathrin-mediated endocytosis. During a fast exo-endocytotic cycle, the vesicle membrane does not fully collapse into the plasma membrane; nevertheless, it releases the vesicular contents through the fusion pore. Once the vesicle is depleted of transmitter, its membrane is recovered without renouncing its identity. In this report, we show that chromaffin cells contain catecholamine-free granules that retain their ability to fuse with the plasma membrane. These catecholamine-free granules represent 7% of the total population of fused vesicles, but they contributed to 47% of the fusion events when the cells were treated with reserpine for several hours. We propose that rat chromaffin granules that transiently fuse with the plasma membrane preserve their exocytotic machinery, allowing another round of exocytosis
Plasma–wall interaction studies within the EUROfusion consortium : progress on plasma-facing components development and qualification
The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful o peration of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading f acilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualificat ion and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma–material interaction as well as the study of fundamental processes. WP PFC addresses these c ritical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle lo ads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alter native scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and m icrostructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.Peer reviewe
A New Technique for Ultrafast Velocity Distribution Measurements of Atomic Species by Post-Ionization Laser Induced Fluorescence (PILIF)
Exocytotic catecholamine release is not associated with cation flux through channels in the vesicle membrane but Na+ influx through the fusion pore
Release of charged neurotransmitter molecules through a narrow fusion pore requires charge compensation by other ions. It has been proposed that this may occur by ion flow from the cytosol through channels in the vesicle membrane, which would generate a net outward current. This hypothesis was tested in chromaffin cells using cell-attached patch amperometry that simultaneously measured catecholamine release from single vesicles and ionic current across the patch membrane. No detectable current was associated with catecholamine release indicating that <2% of cations, if any, enter the vesicle through its membrane. Instead,we show that flux of catecholamines through the fusion pore, measured as an amperometric foot signal, decreases when the extracellular cation concentration is reduced. The results reveal that the rate of transmitter release through the fusion pore is
coupled to net Na+ influx through the fusion pore, as predicted by electrodiffusion theory applied to fusion-pore permeation,and suggest a prefusion rather than postfusion role for vesicular cation channels
- …
