15,160 research outputs found
A circumferentially flanged tibial tray minimizes bone-tray shear micromotion
Aseptic loosening of the tibial component is the major complication of total knee arthroplasty. There is an association between early excessive shear micromotion between the bone and the tray of the tibial component and late aseptic loosening. Using non-linear finite element analysis, whether a tibial tray with a circumferentially flanged rim and a mating cut in the proximal tibia could minimize bone-tray shear micromotion was considered. fifteen competing tray designs with various degrees of flange curvature were assessed with the aim of minimizing bone-tray shear micromotion. A trade-off was found between reducing micromotion and increasing peripheral cancellous bone stresses. It was found that, within the limitations of the study, there was a theoretical design that could virtually eliminate micromotion due to axial loads, with minimal bone removal and without the use of screws or pegs
Quantum search algorithms on a regular lattice
Quantum algorithms for searching one or more marked items on a d-dimensional
lattice provide an extension of Grover's search algorithm including a spatial
component. We demonstrate that these lattice search algorithms can be viewed in
terms of the level dynamics near an avoided crossing of a one-parameter family
of quantum random walks. We give approximations for both the level-splitting at
the avoided crossing and the effectively two-dimensional subspace of the full
Hilbert space spanning the level crossing. This makes it possible to give the
leading order behaviour for the search time and the localisation probability in
the limit of large lattice size including the leading order coefficients. For
d=2 and d=3, these coefficients are calculated explicitly. Closed form
expressions are given for higher dimensions
Counting faces of randomly-projected polytopes when the projection radically lowers dimension
This paper develops asymptotic methods to count faces of random
high-dimensional polytopes. Beyond its intrinsic interest, our conclusions have
surprising implications - in statistics, probability, information theory, and
signal processing - with potential impacts in practical subjects like medical
imaging and digital communications. Three such implications concern: convex
hulls of Gaussian point clouds, signal recovery from random projections, and
how many gross errors can be efficiently corrected from Gaussian error
correcting codes.Comment: 56 page
Recommended from our members
Maintenance and degradation of proteins in intact and severed axons: Implications for the mechanism of long-term survival of anucleate crayfish axons
Protein maintenance and degradation are examined in the
severed distal (anucleate) portions of crayfish medial giant
axons (MGAs), which remain viable for over 7 months following
axotomy. On polyacrylamide gels, the silver-stained
protein banding pattern of anucleate MGAs severed from
their cell bodies for up to 4 months remains remarkably similar
to that of intact MGAs. At 7 months postseverance, some
(but not all) proteins are decreased in anucleate MGAs compared
to intact MGAs. To determine the half-life of axonally
transported proteins, we radiolabeled MGA cell bodies and
monitored the degradation of newly synthesized transported
proteins. Assuming exponential decay, proteins in the fast
component of axonal transport have an average half-life of
14 d in anucleate MGAs and proteins in the slow component
have an average half-life of 17 d. Such half-lives are very
unlikely to account for the ability of anucleate MGAs to survive
for over 7 months after axotomy.This work was supported by an ATP grant to G.D.B.Neuroscienc
Investigation of a Method for Extraction of Indium from Zinc Flue Dust.
In metallurgical practice today some of the relatively rare metal Indium is recovered as a by-product from the ores of other metals. Indium is a soft, silvery—white metal belonging to the third group of the periodic classification. It is situated just above tin in the electrochemical series
Utilization and Application of Business Computing Systems in Corporate Real Estate
This study reports on the utilization of business computing systems by corporate real estate executives. A survey was undertaken to examine four issues: types of property data collected, MIS report generation, hardware/software usage, and decision models and experts employed. NACORE members were surveyed and reported extensive usage of well-known business computing systems (e.g., transaction processing and management information systems), while newer systems (e.g., decision support and expert systems) are just beginning to be introduced into corporate real estate. Empirical analysis revealed differences among industries in the types of reports and property financial data that are maintained.
Some effects of adverse weather conditions on performance of airplane antiskid braking systems
The performance of current antiskid braking systems operating under adverse weather conditions was analyzed in an effort to both identify the causes of locked-wheel skids which sometimes occur when the runway is slippery and to find possible solutions to this operational problem. This analysis was made possible by the quantitative test data provided by recently completed landing research programs using fully instrumented flight test airplanes and was further supported by tests performed at the Langley aircraft landing loads and traction facility. The antiskid system logic for brake control and for both touchdown and locked-wheel protection is described and its response behavior in adverse weather is discussed in detail with the aid of available data. The analysis indicates that the operational performance of the antiskid logic circuits is highly dependent upon wheel spin-up acceleration and can be adversely affected by certain pilot braking inputs when accelerations are low. Normal antiskid performance is assured if the tire-to-runway traction is sufficient to provide high wheel spin-up accelerations or if the system is provided a continuous, accurate ground speed reference. The design of antiskid systems is complicated by the necessity for tradeoffs between tire braking and cornering capabilities, both of which are necessary to provide safe operations in the presence of cross winds, particularly under slippery runway conditions
- …
