1,015 research outputs found
Theory of Cylindrical Tubules and Helical Ribbons of Chiral Lipid Membranes
We present a general theory for the equilibrium structure of cylindrical
tubules and helical ribbons of chiral lipid membranes. This theory is based on
a continuum elastic free energy that permits variations in the direction of
molecular tilt and in the curvature of the membrane. The theory shows that the
formation of tubules and helical ribbons is driven by the chirality of the
membrane. Tubules have a first-order transition from a uniform state to a
helically modulated state, with periodic stripes in the tilt direction and
ripples in the curvature. Helical ribbons can be stable structures, or they can
be unstable intermediate states in the formation of tubules.Comment: 43 pages, including 12 postscript figures, uses REVTeX 3.0 and
epsf.st
Phase equilibria and glass transition in colloidal systems with short-ranged attractive interactions. Application to protein crystallization
We have studied a model of a complex fluid consisting of particles
interacting through a hard core and a short range attractive potential of both
Yukawa and square-well form. Using a hybrid method, including a self-consistent
and quite accurate approximation for the liquid integral equation in the case
of the Yukawa fluid, perturbation theory to evaluate the crystal free energies,
and mode-coupling theory of the glass transition, we determine both the
equilibrium phase diagram of the system and the lines of equilibrium between
the supercooled fluid and the glass phases. For these potentials, we study the
phase diagrams for different values of the potential range, the ratio of the
range of the interaction to the diameter of the repulsive core being the main
control parameter. Our arguments are relevant to a variety of systems, from
dense colloidal systems with depletion forces, through particle gels,
nano-particle aggregation, and globular protein crystallization.Comment: 20 pages, 10 figure
Midday measurements of leaf water potential and stomatal conductance are highly correlated with daily water use of Thompson Seedless grapevines
A study was conducted to determine the relationship between midday measurements of vine water status and daily water use of grapevines measured with a weighing lysimeter. Water applications to the vines were terminated on August 24th for 9 days and again on September 14th for 22 days. Daily water use of the vines in the lysimeter (ETLYS) was approximately 40 L vine−1 (5.3 mm) prior to turning the pump off, and it decreased to 22.3 L vine−1 by September 2nd. Pre-dawn leaf water potential (ΨPD) and midday Ψl on August 24th were −0.075 and −0.76 MPa, respectively, with midday Ψl decreasing to −1.28 MPa on September 2nd. Leaf g s decreased from ~500 to ~200 mmol m−2 s−1 during the two dry-down periods. Midday measurements of g s and Ψl were significantly correlated with one another (r = 0.96) and both with ETLYS/ETo (r = ~0.9). The decreases in Ψl, g s, and ETLYS/ETo in this study were also a linear function of the decrease in volumetric soil water content. The results indicate that even modest water stress can greatly reduce grapevine water use and that short-term measures of vine water status taken at midday are a reflection of daily grapevine water us
Evo-devo of human adolescence: beyond disease models of early puberty
Despite substantial heritability in pubertal development, much variation remains to be explained, leaving room for the influence of environmental factors to adjust its phenotypic trajectory in the service of fitness goals. Utilizing evolutionary development biology (evo-devo), we examine adolescence as an evolutionary life-history stage in its developmental context. We show that the transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, other environmental cues, social needs of adolescence and maturation toward youth and adulthood. Using the evolutionary theory of socialization, we show that familial psychosocial stress fosters a fast life history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. Here we explore implications of an evolutionary-developmental-endocrinological-anthropological framework for theory building, while illuminating new directions for research
Adsorption of mono- and multivalent cat- and anions on DNA molecules
Adsorption of monovalent and multivalent cat- and anions on a deoxyribose
nucleic acid (DNA) molecule from a salt solution is investigated by computer
simulation. The ions are modelled as charged hard spheres, the DNA molecule as
a point charge pattern following the double-helical phosphate strands. The
geometrical shape of the DNA molecules is modelled on different levels ranging
from a simple cylindrical shape to structured models which include the major
and minor grooves between the phosphate strands. The densities of the ions
adsorbed on the phosphate strands, in the major and in the minor grooves are
calculated. First, we find that the adsorption pattern on the DNA surface
depends strongly on its geometrical shape: counterions adsorb preferentially
along the phosphate strands for a cylindrical model shape, but in the minor
groove for a geometrically structured model. Second, we find that an addition
of monovalent salt ions results in an increase of the charge density in the
minor groove while the total charge density of ions adsorbed in the major
groove stays unchanged. The adsorbed ion densities are highly structured along
the minor groove while they are almost smeared along the major groove.
Furthermore, for a fixed amount of added salt, the major groove cationic charge
is independent on the counterion valency. For increasing salt concentration the
major groove is neutralized while the total charge adsorbed in the minor groove
is constant. DNA overcharging is detected for multivalent salt. Simulations for
a larger ion radii, which mimic the effect of the ion hydration, indicate an
increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure
Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil
Background and aimsRoot elongation is generally limited by a combination of mechanical impedance and water stress in most arable soils. However, dynamic changes of soil penetration resistance with soil water content are rarely included in models for predicting root growth. Better modelling frameworks are needed to understand root growth interactions between plant genotype, soil management, and climate. Aim of paper is to describe a new model of root elongation in relation to soil physical characteristics like penetration resistance, matric potential, and hypoxia.MethodsA new diagrammatic framework is proposed to illustrate the interaction between root elongation, soil management, and climatic conditions. The new model was written in Matlab®, using the root architecture model RootBox and a model that solves the 1D Richards equations for water flux in soil. Inputs: root architectural parameters for Soybean; soil hydraulic properties; root water uptake function in relation to matric flux potential; root elongation rate as a function of soil physical characteristics. Simulation scenarios: (a) compact soil layer at 16 to 20 cm; (b) test against a field experiment in Brazil during contrasting drought and normal rainfall seasons.Results(a) Soil compaction substantially slowed root growth into and below the compact layer. (b) Simulated root length density was very similar to field measurements, which was influenced greatly by drought. The main factor slowing root elongation in the simulations was evaluated using a stress reduction function.ConclusionThe proposed framework offers a way to explore the interaction between soil physical properties, weather and root growth. It may be applied to most root elongation models, and offers the potential to evaluate likely factors limiting root growth in different soils and tillage regimes
Creatine and guanidinoacetate reference values in a French population
Creatine and guanidinoacetate are biomarkers of creatine metabolism. Their assays in body fluids may be used for detecting patients with primary creatine deficiency disorders (PCDD), a class of inherited diseases. Their laboratory values in blood and urine may vary with age, requiring that reference normal values are given within the age range. Despite the long known role of creatine for muscle physiology, muscle signs are not necessarily the major complaint expressed by PCDD patients. These disorders drastically affect brain function inducing, in patients, intellectual disability, autistic behavior and other neurological signs (delays in speech and language, epilepsy, ataxia, dystonia and choreoathetosis), being a common feature the drop in brain creatine content. For this reason, screening of PCDD patients has been repeatedly carried out in populations with neurological signs. This report is aimed at providing reference laboratory values and related age ranges found for a large scale population of patients with neurological signs (more than 6 thousand patients) previously serving as a background population for screening French patients with PCDD. These reference laboratory values and age ranges compare rather favorably with literature values for healthy populations. Some differences are also observed, and female participants are discriminated from male participants as regards to urine but not blood values including creatine on creatinine ratio and guanidinoacetate on creatinine ratio values. Such gender differences were previously observed in healthy populations; they might be explained by literature differential effects of testosterone and estrogen in adolescents and adults, and by estrogen effects in prepubertal age on SLC6A8 function. Finally, though they were acquired on a population with neurological signs, the present data might reasonably serve as reference laboratory values in any future medical study exploring abnormalities of creatine metabolism and transport
Small-angle neutron scattering from multilamellar lipid bilayers: Theory, model, and experiment
Measuring root system traits of wheat in 2D images to parameterize 3D root architecture models
Background and aimsThe main difficulty in the use of 3D root architecture models is correct parameterization. We evaluated distributions of the root traits inter-branch distance, branching angle and axial root trajectories from contrasting experimental systems to improve model parameterization.MethodsWe analyzed 2D root images of different wheat varieties (Triticum aestivum) from three different sources using automatic root tracking. Model input parameters and common parameter patterns were identified from extracted root system coordinates. Simulation studies were used to (1) link observed axial root trajectories with model input parameters (2) evaluate errors due to the 2D (versus 3D) nature of image sources and (3) investigate the effect of model parameter distributions on root foraging performance.ResultsDistributions of inter-branch distances were approximated with lognormal functions. Branching angles showed mean values <90°. Gravitropism and tortuosity parameters were quantified in relation to downwards reorientation and segment angles of root axes. Root system projection in 2D increased the variance of branching angles. Root foraging performance was very sensitive to parameter distribution and variance.Conclusions2D image analysis can systematically and efficiently analyze root system architectures and parameterize 3D root architecture models. Effects of root system projection (2D from 3D) and deflection (at rhizotron face) on size and distribution of particular parameters are potentially significant
Coproparasitological survey on gastrointestinal parasites in green iguanas (Iguana iguana) of Trinidad and Tobago
Abstract The Green iguana (Iguana iguana) is a popular wildlife species in the Latin American and Caribbean (LAC) region, that has been recognized as being host to various parasites and diseases. Despite this significance, few studies address the parasite epidemiology of these species in the Caribbean region and particularly in the island of Trinidad and Tobago where the iguana is recognized as a popular ‘wild’ meat animal. This study investigates the presence of gastrointestinal (GI) parasites in both captive and wild Green iguana populations in Trinidad and Tobago. A total of 52 faecal samples were obtained from wild (n=26) and captive (n=26) iguana populations across both islands and then analysed for parasite egg presence. Results indicated no significant difference between the captive status and sex for parasite load and diversity between captive and wild iguanas. Overall, most individuals exhibited two types of parasite eggs in their faeces (Oxyurids and Ascarids), with three distinct parasite egg types identified (Ascarids, Oxyurids and Tapeworms). This study reveals the parasite load and diversity of GI parasites in Trinidad and Tobago iguana populations, offering insights crucial for wildlife disease and conservation management in the region
- …
