551 research outputs found

    Asymptotic Laws for Joint Content Replication and Delivery in Wireless Networks

    Full text link
    We investigate on the scalability of multihop wireless communications, a major concern in networking, for the case that users access content replicated across the nodes. In contrast to the standard paradigm of randomly selected communicating pairs, content replication is efficient for certain regimes of file popularity, cache and network size. Our study begins with the detailed joint content replication and delivery problem on a 2D square grid, a hard combinatorial optimization. This is reduced to a simpler problem based on replication density, whose performance is of the same order as the original. Assuming a Zipf popularity law, and letting the size of content and network both go to infinity, we identify the scaling laws and regimes of the required link capacity, ranging from O(\sqrt{N}) down to O(1)

    Wireless Network Stability in the SINR Model

    Full text link
    We study the stability of wireless networks under stochastic arrival processes of packets, and design efficient, distributed algorithms that achieve stability in the SINR (Signal to Interference and Noise Ratio) interference model. Specifically, we make the following contributions. We give a distributed algorithm that achieves Ω(1log2n)\Omega(\frac{1}{\log^2 n})-efficiency on all networks (where nn is the number of links in the network), for all length monotone, sub-linear power assignments. For the power control version of the problem, we give a distributed algorithm with Ω(1logn(logn+loglogΔ))\Omega(\frac{1}{\log n(\log n + \log \log \Delta)})-efficiency (where Δ\Delta is the length diversity of the link set).Comment: 10 pages, appeared in SIROCCO'1

    Exploiting Caching and Multicast for 5G Wireless Networks

    Get PDF
    The landscape toward 5G wireless communication is currently unclear, and, despite the efforts of academia and industry in evolving traditional cellular networks, the enabling technology for 5G is still obscure. This paper puts forward a network paradigm toward next-generation cellular networks, targeting to satisfy the explosive demand for mobile data while minimizing energy expenditures. The paradigm builds on two principles; namely caching and multicast. On one hand, caching policies disperse popular content files at the wireless edge, e.g., pico-cells and femto-cells, hence shortening the distance between content and requester. On other hand, due to the broadcast nature of wireless medium, requests for identical files occurring at nearby times are aggregated and served through a common multicast stream. To better exploit the available cache space, caching policies are optimized based on multicast transmissions. We show that the multicast-aware caching problem is NP-hard and develop solutions with performance guarantees using randomized-rounding techniques. Trace-driven numerical results show that in the presence of massive demand for delay tolerant content, combining caching and multicast can indeed reduce energy costs. The gains over existing caching schemes are 19% when users tolerate delay of three minutes, increasing further with the steepness of content access pattern

    Concave Switching in Single and Multihop Networks

    Full text link
    Switched queueing networks model wireless networks, input queued switches and numerous other networked communications systems. For single-hop networks, we consider a {(α,g\alpha,g)-switch policy} which combines the MaxWeight policies with bandwidth sharing networks -- a further well studied model of Internet congestion. We prove the maximum stability property for this class of randomized policies. Thus these policies have the same first order behavior as the MaxWeight policies. However, for multihop networks some of these generalized polices address a number of critical weakness of the MaxWeight/BackPressure policies. For multihop networks with fixed routing, we consider the Proportional Scheduler (or (1,log)-policy). In this setting, the BackPressure policy is maximum stable, but must maintain a queue for every route-destination, which typically grows rapidly with a network's size. However, this proportionally fair policy only needs to maintain a queue for each outgoing link, which is typically bounded in number. As is common with Internet routing, by maintaining per-link queueing each node only needs to know the next hop for each packet and not its entire route. Further, in contrast to BackPressure, the Proportional Scheduler does not compare downstream queue lengths to determine weights, only local link information is required. This leads to greater potential for decomposed implementations of the policy. Through a reduction argument and an entropy argument, we demonstrate that, whilst maintaining substantially less queueing overhead, the Proportional Scheduler achieves maximum throughput stability.Comment: 28 page

    Fluid models of congestion collapse in overloaded switched networks

    Get PDF
    We consider a switched network (i.e. a queueing network in which there are constraints on which queues may be served simultaneously), in a state of overload. We analyse the behaviour of two scheduling algorithms for multihop switched networks: a generalized version of max-weight, and the α-fair policy. We show that queue sizes grow linearly with time, under either algorithm, and we characterize the growth rates. We use this characterization to demonstrate examples of congestion collapse, i.e. cases in which throughput drops as the switched network becomes more overloaded.We further show that the loss of throughput can be made arbitrarily small by the max-weight algorithm with weight function f (q) = q[superscript α] as α→0.National Science Foundation (U.S.) (Career CNS-0546590

    A framework for routing and congestion control for multicast information flows

    Full text link

    Optimal scaling of average queue sizes in an input-queued switch: an open problem

    Get PDF
    We review some known results and state a few versions of an open problem related to the scaling of the total queue size (in steady state) in an n×n input-queued switch, as a function of the port number n and the load factor ρ. Loosely speaking, the question is whether the total number of packets in queue, under either the maximum weight policy or under an optimal policy, scales (ignoring any logarithmic factors) as O(n/(1 − ρ)).National Science Foundation (U.S.) (Grant CCF-0728554

    On the Complexity of Scheduling in Wireless Networks

    Get PDF
    We consider the problem of throughput-optimal scheduling in wireless networks subject to interference constraints. We model the interference using a family of K-hop interference models, under which no two links within a K-hop distance can successfully transmit at the same time. For a given K, we can obtain a throughput-optimal scheduling policy by solving the well-known maximum weighted matching problem. We show that for K > 1, the resulting problems are NP-Hard that cannot be approximated within a factor that grows polynomially with the number of nodes. Interestingly, for geometric unit-disk graphs that can be used to describe a wide range of wireless networks, the problems admit polynomial time approximation schemes within a factor arbitrarily close to 1. In these network settings, we also show that a simple greedy algorithm can provide a 49-approximation, and the maximal matching scheduling policy, which can be easily implemented in a distributed fashion, achieves a guaranteed fraction of the capacity region for "all K." The geometric constraints are crucial to obtain these throughput guarantees. These results are encouraging as they suggest that one can develop low-complexity distributed algorithms to achieve near-optimal throughput for a wide range of wireless networksopen1

    Energy-Aware Base Stations: The Effect of Planning, Management, and Femto Layers

    Get PDF
    We compare the performance of three base station management schemes on three different network topologies. In addition, we explore the effect of offloading traffic to heterogeneous femtocell layer upon energy savings taking into account the increase of base station switch-off time intervals. Fairness between mobile operator and femtocell owners is maintained since current femtocell technologies present flat power consumption curves with respect to served traffic. We model two different user-to-femtocell association rules in order to capture realistic and maximum gains from the heterogeneous network. To provide accurate findings and a holistic overview of the techniques, we explore a real urban district where channel estimations and power control are modeled using deterministic algorithms. Finally, we explore energy efficiency metrics that capture savings in the mobile network operator, the required watts per user and watts per bitrate. It is found that the newly established pseudo distributed management scheme is the most preferable solution for practical implementations and together with the femotcell layer the network can handle dynamic load control that is regarded as the basic element of future demand response programs

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future
    corecore