2,762 research outputs found
EVALUATION OF THE DEPARTMENT OF DEFENSE INSTALLATION MOSQUITO SURVEILLANCE PROGRAM, UNITED STATES 2012-2015
Master of Public HealthPublic Health Interdepartmental ProgramThu Annelise NguyenWest Nile virus (WNV) is the primary arbovirus acquired within the United States and is transmitted by the bite of a mosquito. Mosquito surveillance programs are key components of overall WNV disease surveillance programs at the local, state, and federal levels. The valuable information collected from mosquito surveillance is used to direct methods to protect public health. To consolidate human and nonhuman (including mosquito surveillance) WNV surveillance data from all states, the Centers for Disease Control and Prevention (CDC) partnered with state public health departments and created ArboNET, the national arboviral surveillance system. Mosquito surveillance programs on Department of Defense (DoD) installations provide valuable information on WNV surveillance within their state. This study was the first to evaluate ArboNET WNV mosquito surveillance data to determine if DoD installations reported to state health departments. Mosquito surveillance data was received from the Army Public Health Center (Provisional) and the Air Force School of Aerospace Medicine. Data was reviewed from 2012-2015 for Army and Air Force installations and cross- referenced with an ArboNET dataset from the CDC. From 2012-2015, Army installations did not report 46.6% (range of 0-86% annually) and Air Force installations did not report 47.4% (range of 16-81% annually) of WNV positive mosquito pools to state public health departments for inclusion into ArboNET. Improved communication, standardization of data fields collected during surveillance, and a standardized database to collect mosquito surveillance data from DoD installations could aid in the improvement of mosquito surveillance data to state health departments
Tomographic Characterization of Three-Qubit Pure States with Only Two-Qubit Detectors
A tomographic process for three-qubit pure states using only pairwise
detections is presented.Comment: 3 pages; revtex4; v2: the focus on tomography was emphasized and the
experimental procedure detailed; v3: the text was improved in clarity, some
mistakes were correcte
Geometrically induced singular behavior of entanglement
We show that the geometry of the set of quantum states plays a crucial role
in the behavior of entanglement in different physical systems. More
specifically it is shown that singular points at the border of the set of
unentangled states appear as singularities in the dynamics of entanglement of
smoothly varying quantum states. We illustrate this result by implementing a
photonic parametric down conversion experiment. Moreover, this effect is
connected to recently discovered singularities in condensed matter models.Comment: v2: 4 pags, 4 figs. A discussion before the proof of Proposition 1
and tomographic results were included, Propostion 2 was removed and the
references were fixe
The Geometry of Entanglement Sudden Death
In open quantum systems, entanglement can vanish faster than coherence. This
phenomenon is usually called sudden death of entanglement. In this paper sudden
death of entanglement is discussed from a geometrical point of view, in the
context of two qubits. A classification of possible scenarios is presented,
with important known examples classified. Theoretical and experimental
construction of other examples is suggested as well as large dimensional and
multipartite versions of the effect.Comment: 6 pages, 2 figures, references added, initial paragraph corrected,
sectioning adopted, some parts rewritten; accepted by New J. Phy
Purification, characterization and molecular cloning of the major chitinase from Tenebrio molitor larval midgut
Insect chitinases are involved in degradation of chitin from the exoskeleton cuticle or from midgut peritrophic membrane during molts. cDNAs coding for insect cuticular and gut chitinases were cloned, but only chitinases from moulting fluid were purified and characterized. In this study the major digestive chitinase from T. molitor midgut (TmChi) was purified to homogeneity, characterized and sequenced after cDNA cloning. TmChi is secreted by midgut epithelial cells, has a molecular weight of 44 kDa and is unstable in the presence of midgut proteinases. TmChi shows strong substrate inhibition when acting on umbelliferyl-derivatives of chitobio- and chitotriosaccharides, but has normal Michaelis kinetics with the N-acetylglucosamine derivative as substrate. TmChi has very low activity against colloidal chitin, but effectively converts oligosaccharides to shorter fragments. The best substrate for TmChi is chitopentaose, with highest kcat/KM value. Sequence analysis and chemical modification experiments showed that the TmChi active site contains carboxylic groups and a tryptophane, which are known to be important for catalysis in family 18 chitinases. Modification with p-hidroximercuribenzoate of a cysteine residue, which is exposed after substrate binding, leads to complete inactivation of the enzyme. TmChi mRNA encodes a signal peptide plus a protein with 37 kDa and high similarity with other insect chitinases from family 18. Surprisingly, this gene does not encode the C-terminal Ser-Thr-rich connector and chitin-binding domain normally present in chitinases. The special features of TmChi probably result from its adaptation to digest chitin-rich food without damaging the peritrophic membrane. © 2006 Elsevier Ltd. All rights reserved
Shear-Wave Velocity Characterization of the USGS Hawaiian Strong-Motion Network on the Island of Hawaii and Development of an NEHRP Site-Class Map
To assess the level and nature of ground shaking in Hawaii for the purposes of earthquake hazard mitigation and seismic design, empirical ground-motion prediction models are desired. To develop such empirical relationships, knowledge of the subsurface site conditions beneath strong-motion stations is critical. Thus, as a first step to develop ground-motion prediction models for Hawaii, wspectral-analysis-of-surface-waves (SASW) profiling was performed at the 22 free-field U.S. Geological Survey (USGS) strong-motion sites on the Big Island to obtain shear-wave velocity (V(S)) data. Nineteen of these stations recorded the 2006 Kiholo Bay moment magnitude (M) 6.7 earthquake, and 17 stations recorded the triggered M 6.0 Mahukona earthquake. V(S) profiling was performed to reach depths of more than 100 ft. Most of the USGS stations are situated on sites underlain by basalt, based on surficial geologic maps. However, the sites have varying degrees of weathering and soil development. The remaining strong-motion stations are located on alluvium or volcanic ash. V(S30) (average V(S) in the top 30 m) values for the stations on basalt ranged from 906 to 1908 ft/s [National Earthquake Hazards Reduction Program (NEHRP) site classes C and D], because most sites were covered with soil of variable thickness. Based on these data, an NEHRP site-class map was developed for the Big Island. These new V(S) data will be a significant input into an update of the USGS statewide hazard maps and to the operation of ShakeMap on the island of Hawaii.George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) under NSF CMS-0086605FEMA HSFEHQ-06-D-0162, HSFEHQ-04-D-0733U.S. Geological Survey, Department of the Interior 08HQGR0036Geotechnical Engineering Cente
Useful entanglement from the Pauli principle
We report a scheme to extract entanglement from semiconductor quantum wells. Two independent photons excite non-interacting electrons in the semiconductor. As the electrons relax to the bottom of the conduction band, the Pauli exclusion principle forces quantum correlations between their spins. We show that after the electron-hole recombination this correlation is transferred to the emitted photons as entanglement in polarization, which can subsequently be used for quantum information tasks. This process solves an important conundrum in quantum information theory: identical particle entanglement is indeed a useful resource for quantum information processing
Are all maximally entangled states pure?
We study if all maximally entangled states are pure through several
entanglement monotones. In the bipartite case, we find that the same conditions
which lead to the uniqueness of the entropy of entanglement as a measure of
entanglement, exclude the existence of maximally mixed entangled states. In the
multipartite scenario, our conclusions allow us to generalize the idea of
monogamy of entanglement: we establish the \textit{polygamy of entanglement},
expressing that if a general state is maximally entangled with respect to some
kind of multipartite entanglement, then it is necessarily factorized of any
other system.Comment: 5 pages, 1 figure. Proof of theorem 3 corrected e new results
concerning the asymptotic regime include
- …
