741 research outputs found
Computational Study of the Structure and Thermodynamic Properties of Ammonium Chloride Clusters Using a Parallel J-Walking Approach
The thermodynamic and structural properties of (NHCl) clusters,
n=3-10 are studied. Using the method of simulated annealing, the geometries of
several isomers for each cluster size are examined. Jump-walking Monte Carlo
simulations are then used to compute the constant-volume heat capacity for each
cluster size over a wide temperature range. To carry out these simulations a
new parallel algorithm is developed using the Parallel Virtual Machine (PVM)
software package. Features of the cluster potential energy surfaces, such as
energy differences among isomers and rotational barriers of the ammonium ions,
are found to play important roles in determining the shape of the heat capacity
curves.Comment: Journal of Chemical Physics, accepted for publicatio
Extra-column Band Broadening in Ultra High Performance Liquid Chromatography
Advances in column technologies for high performance liquid chromatography (HPLC) have led to the use of small, highly efficient packing materials. The use of these materials requires short, small diameter columns as well as instruments capable of withstanding high pressures (up to 1000bar) and sometimes temperature (in excess of 100°C), a technique dubbed ultra-high performance liquid chromatography or UPLC. The advantage is a greater than ten-fold reduction in analysis time without a loss of peak capacity or resolution. Due to the small volumes inherent in the new columns, the extra-column volumes of the instrument can become a significant source of dispersion leading to extra-column broadening of chromatographic peaks. Uncontrolled or accounted for, this variance severely limits the separation potential of improved column packings and reduces the accuracy of evaluations of instruments and columns. An investigation is made of the source and nature of the band broadening in instrumental components with an eye towards reduction of variance without loss of performance. Different methods for calculating the degree of extra-column band broadening are discussed. Applications of the calculated data for evaluation of the kinetic parameters of UPLC are reviewed
Mutually Penetrating Motion of Self-Organized 2D Patterns of Soliton-Like Structures
Results of numerical simulations of a recently derived most general
dissipative-dispersive PDE describing evolution of a film flowing down an
inclined plane are presented. They indicate that a novel complex type of
spatiotemporal patterns can exist for strange attractors of nonequilibrium
systems. It is suggested that real-life experiments satisfying the validity
conditions of the theory are possible: the required sufficiently viscous
liquids are readily available.Comment: minor corrections, 4 pages, LaTeX, 6 figures, mpeg simulations
available upon or reques
Recent Radiation Test Results for Trench Power MOSFETs
Single-event effect (SEE) radiation test results are presented for various trench-gate power MOSFETs. The heavy-ion response of the first (and only) radiation-hardened trench-gate power MOSFET is evaluated: the manufacturer SEE response curve is verified and importantly, no localized dosing effects are measured, distinguishing it from other, non-hardened trench-gate power MOSFETs. Evaluations are made of n-type commercial and both n- and p-type automotive grade trench-gate device using ions comparable to of those on the low linear energy transfer (LET) side of the iron knee of the galactic cosmic ray spectrum, to explore suitability of these parts for missions with higher risk tolerance and shorter duration, such as CubeSats. Part-to-part variability of SEE threshold suggests testing with larger sample sizes and applying more aggressive derating to avoid on-orbit failures. The n-type devices yielded expected localized dosing effects including when irradiated in an unbiased (0-V) configuration, adding to the challenge of inserting these parts into space flight missions
Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and NASA Electronic Parts and Packaging Program
Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices. Displacement Damage, Optoelectronics, Proton Damage, Single Event Effects, and Total Ionizing Dose
Stable two-dimensional solitary pulses in linearly coupled dissipative Kadomtsev-Petviashvili equations
A two-dimensional (2D) generalization of the stabilized Kuramoto -
Sivashinsky (KS) system is presented. It is based on the Kadomtsev-Petviashvili
(KP) equation including dissipation of the generic (Newell -- Whitehead --
Segel, NWS) type and gain. The system directly applies to the description of
gravity-capillary waves on the surface of a liquid layer flowing down an
inclined plane, with a surfactant diffusing along the layer's surface.
Actually, the model is quite general, offering a simple way to stabilize
nonlinear waves in media combining the weakly-2D dispersion of the KP type with
gain and NWS dissipation. Parallel to this, another model is introduced, whose
dissipative terms are isotropic, rather than of the NWS type. Both models
include an additional linear equation of the advection-diffusion type, linearly
coupled to the main KP-NWS equation. The extra equation provides for stability
of the zero background in the system, opening a way to the existence of stable
localized pulses. The consideration is focused on the case when the dispersive
part of the system of the KP-I type, admitting the existence of 2D localized
pulses. Treating the dissipation and gain as small perturbations and making use
of the balance equation for the field momentum, we find that the equilibrium
between the gain and losses may select two 2D solitons, from their continuous
family existing in the conservative counterpart of the model (the latter family
is found in an exact analytical form). The selected soliton with the larger
amplitude is expected to be stable. Direct simulations completely corroborate
the analytical predictions.Comment: a latex text file and 16 eps files with figures; Physical Review E,
in pres
Arterial inflammation in mice lacking the interleukin 1 receptor antagonist gene
Branch points and flexures in the high pressure arterial system have long been recognized as sites of unusually high turbulence and consequent stress in humans are foci for atherosclerotic lesions. We show that mice that are homozygous for a null mutation in the gene encoding an endogenous antiinflammatory cytokine, interleukin 1 receptor antagonist (IL-1ra), develop lethal arterial inflammation involving branch points and flexures of the aorta and its primary and secondary branches. We observe massive transmural infiltration of neutrophils, macrophages, and CD4(+) T cells. Animals appear to die from vessel wall collapse, stenosis, and organ infarction or from hemorrhage from ruptured aneurysms. Heterozygotes do not die from arteritis within a year of birth but do develop small lesions, which suggests that a reduced level of IL-1ra is insufficient to fully control inflammation in arteries. Our results demonstrate a surprisingly specific role for IL-1ra in the control of spontaneous inflammation in constitutively stressed artery walls, suggesting that expression of IL-1 is likely to have a significant role in signaling artery wall damage
Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and Selected NASA Electronic Parts and Packaging Program
Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices
Compendium of Single Event Effects, Total Ionizing Dose, and Displacement Damage for Candidate Spacecraft Electronics for NASA
We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to proton and heavy ion-induced single-event effects (SEE), proton-induced displacement damage (DD), and total ionizing dose (TID). This paper is a summary of test results
Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders
Prova tipográfica (uncorrected proof)Neurodevelopmental disorders such as epilepsy, intellectual disability (ID), and autism spectrum disorders (ASDs) occur in over 2 % of the population, as the result of genetic mutations, environmental factors, or combination of both. In the last years, use of large-scale genomic techniques allowed important advances in the identification of genes/loci associated with these disorders. Nevertheless, following association of novel genes with a given disease, interpretation of findings is often difficult due to lack of information on gene function and effect of a given mutation in the corresponding protein. This brings the need to validate genetic associations from a functional perspective in model systems in a relatively fast but effective manner. In this context, the small nematode, Caenorhabditis elegans, presents a good compromise between the simplicity of cell models and the complexity of rodent nervous systems. In this article, we review the features that make C. elegans a good model for the study of neurodevelopmental diseases. We discuss its nervous system architecture and function as well as the molecular basis of behaviors that seem important in the context of different neurodevelopmental disorders. We review methodologies used to assess memory, learning, and social behavior as well as susceptibility to seizures in this organism. We will also discuss technological progresses applied in C. elegans neurobiology research, such as use of microfluidics and optogenetic tools. Finally, we will present some interesting examples of the functional analysis of genes associated with human neurodevelopmental disorders and how we can move from genes to therapies using this simple model organism.The authors would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-GMG/112577/2009). AJR and CB are recipients of FCT fellowships: SFRH/BPD/33611/2009 and SFRH/BPD/74452/2010, respectively
- …
