23 research outputs found
ISRM-Suggested Method for Determining the Mode I Static Fracture Toughness Using Semi-Circular Bend Specimen
The International Society for Rock Mechanics has so far developed two standard methods for the determination of static fracture toughness of rock. They used three different core based specimens and tests were to be performed on a typical laboratory compression or tension load frame. Another method to determine the mode I fracture toughness of rock using semicircular bend specimen is herein presented. The specimen is semicircular in shape and made from typical cores taken from the rock with any relative material directions noted. The specimens are tested in three-point bending using a laboratory compression test instrument. The failure load along with its dimensions is used to determine the fracture toughness. Most sedimentary rocks which are layered in structure may exhibit fracture properties that depend on the orientation and therefore measurements in more than one material direction may be necessary. The fracture toughness measurements are expected to yield a size-independent material property if certain minimum specimen size requirements are satisfied
Estimation of Fracture Toughness of Anisotropic Rocks by Semi-Circular Bend (SCB) Tests Under Water Vapor Pressure
In order to investigate the influence of water vapor pressure in the surrounding environment on mode I fracture toughness (KIc) of rocks, semi-circular bend (SCB) tests under various water vapor pressures were conducted. Water vapor is one of the most effective agents which promote stress corrosion of rocks. The range of water vapor pressure used was 10−2 to 103 Pa, and two anisotropic rock types, African granodiorite and Korean granite, were used in this work. The measurement of elastic wave velocity and observation of thin sections of these rocks were performed to investigate the microstructures of the rocks. It was found that the distribution of inherent microcracks and grains have a preferred orientation. Two types of specimens in different orientations, namely Type-1 and Type-3, were prepared based on the anisotropy identified by the differences in the elastic wave velocity. KIc of both rock types was dependent on the water vapor pressure in the surrounding environment and decreased with increasing water vapor pressure. It was found that the degree of the dependence is influenced by the orientation and density of inherent microcracks. The experimental results also showed that KIc depended on the material anisotropy. A fracture process was discussed on the basis of the geometry of fractures within fractured specimens visualized by the X-ray computed tomography (CT) method. It was concluded that the dominant factor causing the anisotropy of KIc is the distribution of grains rather than inherent microcracks in these rocks
Evaluation of Mode I Fracture Toughness Assisted by the Numerical Determination of K-Resistance
The fracture toughness of a rock often varies depending on the specimen shape and the loading type used to measure it. To investigate the mode I fracture toughness using semi-circular bend (SCB) specimens, we experimentally studied the fracture toughness using SCB and chevron bend (CB) specimens, the latter being one of the specimens used extensively as an International Society for Rock Mechanics (ISRM) suggested method, for comparison. The mode I fracture toughness measured using SCB specimens is lower than both the level I and level II fracture toughness values measured using CB specimens. A numerical study based on discontinuum mechanics was conducted using a two-dimensional distinct element method (DEM) for evaluating crack propagation in the SCB specimen during loading. The numerical results indicate subcritical crack growth as well as sudden crack propagation when the load reaches the maximum. A K-resistance curve is drawn using the crack extension and the load at the point of evaluation. The fracture toughness evaluated by the K-resistance curve is in agreement with the level II fracture toughness measured using CB specimens. Therefore, the SCB specimen yields an improved value for fracture toughness when the increase of K-resistance with stable crack propagation is considered
Plasma thrombomodulin levels in lung cancer patients
Background. Thrombomodulin (TM) is a glycoprotein and besides its anticoagulant property it is accepted as an once developmental antigen. Considering these properties we hypothesised that active TMB might have a role in cancer cell behaviour
