8,070 research outputs found
Recommended from our members
The impact of a seasonally ice free Arctic Ocean on the temperature, precipitation and surface mass balance of Svalbard
The observed decline in summer sea ice extent since the 1970s is predicted to continue until the Arctic Ocean is seasonally ice free during the 21st Century. This will lead to a much perturbed Arctic climate with large changes in ocean surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers and is expected to experience rapid warming over the 21st Century. The total sea level rise if all the land ice on Svalbard were to melt completely is 0.02 m.
The purpose of this study is to quantify the impact of climate change on Svalbard’s surface mass balance (SMB) and
to determine, in particular, what proportion of the projected changes in precipitation and SMB are a result of changes to the Arctic sea ice cover. To investigate this a regional climate model was forced with monthly mean climatologies of sea surface temperature (SST) and sea ice concentration for the periods 1961–1990 and 2061–2090 under two emission scenarios. In a novel forcing experiment, 20th Century SSTs and 21st Century sea ice were used to force one simulation to investigate the role of sea ice forcing. This experiment results in a 3.5 m water equivalent increase in Svalbard’s SMB compared to the present day. This is because over 50 % of the projected increase in winter precipitation over Svalbard under the A1B emissions scenario is due to an increase in lower atmosphere moisture content associated with evaporation from the ice free ocean. These results indicate that increases in precipitation due to sea ice decline may act to moderate mass loss from Svalbard’s glaciers due to future Arctic warming
Tensor Analysis and Fusion of Multimodal Brain Images
Current high-throughput data acquisition technologies probe dynamical systems
with different imaging modalities, generating massive data sets at different
spatial and temporal resolutions posing challenging problems in multimodal data
fusion. A case in point is the attempt to parse out the brain structures and
networks that underpin human cognitive processes by analysis of different
neuroimaging modalities (functional MRI, EEG, NIRS etc.). We emphasize that the
multimodal, multi-scale nature of neuroimaging data is well reflected by a
multi-way (tensor) structure where the underlying processes can be summarized
by a relatively small number of components or "atoms". We introduce
Markov-Penrose diagrams - an integration of Bayesian DAG and tensor network
notation in order to analyze these models. These diagrams not only clarify
matrix and tensor EEG and fMRI time/frequency analysis and inverse problems,
but also help understand multimodal fusion via Multiway Partial Least Squares
and Coupled Matrix-Tensor Factorization. We show here, for the first time, that
Granger causal analysis of brain networks is a tensor regression problem, thus
allowing the atomic decomposition of brain networks. Analysis of EEG and fMRI
recordings shows the potential of the methods and suggests their use in other
scientific domains.Comment: 23 pages, 15 figures, submitted to Proceedings of the IEE
Double percolation effects and fractal behavior in magnetic/superconducting hybrids
Perpendicular magnetic anisotropy ferromagnetic/ superconducting (FM/SC)
bilayers with a labyrinth domain structure are used to study nucleation of
superconductivity on a fractal network, tunable through magnetic history. As
clusters of reversed domains appear in the FM layer, the SC film shows a
percolative behavior that depends on two independent processes: the arrangement
of initial reversed domains and the fractal geometry of expanding clusters. For
a full labyrinth structure, the behavior of the upper critical field is typical
of confined superconductivity on a fractal network.Comment: 15 pages, 5 figure
Early Type Galaxies in the Mid Infrared: a new flavor to their stellar populations
The mid infrared emission of early type galaxies traces the presence of
intermediate age stellar populations as well as even tiny amounts of ongoing
star formation. Here we discuss high S/N Spitzer IRS spectra of a sample of
Virgo early type galaxies, with particular reference to NGC 4435. We show that,
by combining mid infrared spectroscopic observations with existing broad band
fluxes, it is possible to obtain a very clean picture of the nuclear activity
in this galaxy.Comment: 4 pages; proceedings of IAU Symposium No. 241, "Stellar Populations
as Building Blocks of Galaxies", editors A. Vazdekis and R. Peletie
High-density speckle contrast optical tomography (SCOT) for three dimensional tomographic imaging of the small animal brain
High-density speckle contrast optical tomography (SCOT) utilizing tens of thousands of source-detector pairs, was developed for in vivo imaging of blood flow in small animals. The reduction in cerebral blood flow (CBF) due to local ischemic stroke in a mouse brain was transcanially imaged and reconstructed in three dimensions. The reconstructed volume was then compared with corresponding magnetic resonance images demonstrating that the volume of reduced CBF agrees with the infarct zone at twenty-four hours.Peer ReviewedPostprint (author's final draft
Star Formation History and Extinction in the central kpc of M82-like Starbursts
We report on the star formation histories and extinction in the central kpc
region of a sample of starburst galaxies that have similar far infrared (FIR),
10 micron and K-band luminosities as those of the archetype starburst M82. Our
study is based on new optical spectra and previously published K-band
photometric data, both sampling the same area around the nucleus. Model
starburst spectra were synthesized as a combination of stellar populations of
distinct ages formed over the Hubble time, and were fitted to the observed
optical spectra and K-band flux. The model is able to reproduce simultaneously
the equivalent widths of emission and absorption lines, the continuum fluxes
between 3500-7000 Ang, the K-band and the FIR flux. We require a minimum of 3
populations -- (1) a young population of age < 8 Myr, with its corresponding
nebular emission, (2) an intermediate-age population (age < 500 Myr), and (3)
an old population that forms part of the underlying disk or/and bulge
population. The contribution of the old population to the K-band luminosity
depends on the birthrate parameter and remains above 60% in the majority of the
sample galaxies. Even in the blue band, the intermediate age and old
populations contribute more than 40% of the total flux in all the cases. A
relatively high contribution from the old stars to the K-band nuclear flux is
also apparent from the strength of the 4000 Ang break and the CaII K line. The
extinction of the old population is found to be around half of that of the
young population. The contribution to the continuum from the relatively old
stars has the effect of diluting the emission equivalent widths below the
values expected for young bursts. The mean dilution factors are found to be 5
and 3 for the Halpha and Hbeta lines respectively.Comment: 20 pages, uses emulateapj.cls. Scheduled to appear in ApJ Jan 1, 200
The Dark Matter Telescope
Weak gravitational lensing enables direct reconstruction of dark matter maps
over cosmologically significant volumes. This research is currently
telescope-limited. The Dark Matter Telescope (DMT) is a proposed 8.4 m
telescope with a 3 degree field of view, with an etendue of 260 , ten times greater than any other current or planned telescope. With
its large etendue and dedicated observational mode, the DMT fills a nearly
unexplored region of parameter space and enables projects that would take
decades on current facilities. The DMT will be able to reach 10-sigma limiting
magnitudes of 27-28 magnitude in the wavelength range .3 - 1 um over a 7 square
degree field in 3 nights of dark time. Here we review its unique weak lensing
cosmology capabilities and the design that enables those capabilities.Comment: in-press version with additions; to appear in proceedings of the Dark
Matter 2000 conference (Santa Monica, February 2000) to be published by
Springe
Neural Connectivity with Hidden Gaussian Graphical State-Model
The noninvasive procedures for neural connectivity are under questioning.
Theoretical models sustain that the electromagnetic field registered at
external sensors is elicited by currents at neural space. Nevertheless, what we
observe at the sensor space is a superposition of projected fields, from the
whole gray-matter. This is the reason for a major pitfall of noninvasive
Electrophysiology methods: distorted reconstruction of neural activity and its
connectivity or leakage. It has been proven that current methods produce
incorrect connectomes. Somewhat related to the incorrect connectivity
modelling, they disregard either Systems Theory and Bayesian Information
Theory. We introduce a new formalism that attains for it, Hidden Gaussian
Graphical State-Model (HIGGS). A neural Gaussian Graphical Model (GGM) hidden
by the observation equation of Magneto-encephalographic (MEEG) signals. HIGGS
is equivalent to a frequency domain Linear State Space Model (LSSM) but with
sparse connectivity prior. The mathematical contribution here is the theory for
high-dimensional and frequency-domain HIGGS solvers. We demonstrate that HIGGS
can attenuate the leakage effect in the most critical case: the distortion EEG
signal due to head volume conduction heterogeneities. Its application in EEG is
illustrated with retrieved connectivity patterns from human Steady State Visual
Evoked Potentials (SSVEP). We provide for the first time confirmatory evidence
for noninvasive procedures of neural connectivity: concurrent EEG and
Electrocorticography (ECoG) recordings on monkey. Open source packages are
freely available online, to reproduce the results presented in this paper and
to analyze external MEEG databases
- …
