1,189 research outputs found
In silico estimates of the free energy rates in growing tumor spheroids
The physics of solid tumor growth can be considered at three distinct size
scales: the tumor scale, the cell-extracellular matrix (ECM) scale and the
sub-cellular scale. In this paper we consider the tumor scale in the interest
of eventually developing a system-level understanding of the progression of
cancer. At this scale, cell populations and chemical species are best treated
as concentration fields that vary with time and space. The cells have
chemo-mechanical interactions with each other and with the ECM, consume glucose
and oxygen that are transported through the tumor, and create chemical
byproducts. We present a continuum mathematical model for the biochemical
dynamics and mechanics that govern tumor growth. The biochemical dynamics and
mechanics also engender free energy changes that serve as universal measures
for comparison of these processes. Within our mathematical framework we
therefore consider the free energy inequality, which arises from the first and
second laws of thermodynamics. With the model we compute preliminary estimates
of the free energy rates of a growing tumor in its pre-vascular stage by using
currently available data from single cells and multicellular tumor spheroids.Comment: 27 pages with 5 figures and 2 tables. Figures and tables appear at
the end of the pape
High-Resolution Spectroscopy from 3050 to 10000 A of the HDF-S QSO J2233-606 with UVES at the ESO VLT
We report on high-resolution observations () of the Hubble
Deep Field South QSO J2233-606 obtained with the VLT UV-Visual Echelle
Spectrograph (UVES). We present spectral data for the wavelength region \AA. The ratio of the final spectrum is about 50 per
resolution element at 4000 \AA, 90 at 5000 \AA, 80 at 6000 \AA, 40 at 8000 \AA.
Redshifts, column densities and Doppler widths of the absorption features have
been determined with Voigt-profile fitting. A total of 621 lines have been
measured. In particular 270 Ly-alpha lines, 41 Ly-beta and 24 systems
containing metal lines have been identified. Together with other data in the
literature, the present spectrum confirms that the evolution of the number
density of Ly-alpha lines with \huno has an upturn at .Comment: 34 pages Latex, with 3 PostScript figures. Astronomical Journal, in
press. A few revised upper limit
Management and display of four-dimensional environmental data sets using McIDAS
Over the past four years, great strides have been made in the areas of data management and display of 4-D meteorological data sets. A survey was conducted of available and planned 4-D meteorological data sources. The data types were evaluated for their impact on the data management and display system. The requirements were analyzed for data base management generated by the 4-D data display system. The suitability of the existing data base management procedures and file structure were evaluated in light of the new requirements. Where needed, new data base management tools and file procedures were designed and implemented. The quality of the basic 4-D data sets was assured. The interpolation and extrapolation techniques of the 4-D data were investigated. The 4-D data from various sources were combined to make a uniform and consistent data set for display purposes. Data display software was designed to create abstract line graphic 3-D displays. Realistic shaded 3-D displays were created. Animation routines for these displays were developed in order to produce a dynamic 4-D presentation. A prototype dynamic color stereo workstation was implemented. A computer functional design specification was produced based on interactive studies and user feedback
Photoexcited electron dynamics in Kondo insulators and heavy fermions
We have studied the photoexcited carrier relaxation dynamics in the Kondo
insulator SmB6 and the heavy fermion metal YbAgCu4 as a function of temperature
and excitation level. The dynamic response is found to be both strongly
temperature dependent and nonlinear. The data are analyzed with a
Rothwarf-Taylor bottleneck model, where the dynamics are governed by the
presence of a narrow gap in the density of states near the Fermi level. The
remarkable agreement with the model suggests that carrier relaxation in a broad
class of heavy electron systems (both metals and insulators) is governed by the
presence of a (weakly temperature dependent) hybridization gap.Comment: accepted for publication in Physical Review Letter
- …
