816 research outputs found
Apparatus to control and visualize the impact of a high-energy laser pulse on a liquid target
We present an experimental apparatus to control and visualize the response of
a liquid target to a laser-induced vaporization. We use a millimeter-sized drop
as target and present two liquid-dye solutions that allow a variation of the
absorption coefficient of the laser light in the drop by seven orders of
magnitude. The excitation source is a Q-switched Nd:YAG laser at its
frequency-doubled wavelength emitting nanosecond pulses with energy densities
above the local vaporization threshold. The absorption of the laser energy
leads to a large-scale liquid motion at timescales that are separated by
several orders of magnitude, which we spatiotemporally resolve by a combination
of ultra-high-speed and stroboscopic high-resolution imaging in two orthogonal
views. Surprisingly, the large-scale liquid motion at upon laser impact is
completely controlled by the spatial energy distribution obtained by a precise
beam-shaping technique. The apparatus demonstrates the potential for accurate
and quantitative studies of laser-matter interactions.Comment: Submitted to Review of Scientific Instrument
Microbubble shape oscillations excited through ultrasonic parametric driving\ud
An air bubble driven by ultrasound can become shape-unstable through a parametric instability. We report time-resolved optical observations of shape oscillations (mode n=2 to 6) of micron-sized single air bubbles. The observed mode number n was found to be linearly related to the ambient radius of the bubble. Above the critical driving pressure threshold for shape oscillations, which is minimal at the resonance of the volumetric radial mode, the observed mode number n is independent of the forcing pressure amplitude. The microbubble shape oscillations were also analyzed numerically by introducing a small nonspherical linear perturbation to a Rayleigh-Plesset-type equation, capturing the experimental observations in detail.\ud
\u
The Bouncing Jet: A Newtonian Liquid Rebounding off a Free Surface
We find that a liquid jet can bounce off a bath of the same liquid if the
bath is moving horizontally with respect to the jet. Previous observations of
jets rebounding off a bath (e.g. Kaye effect) have been reported only for
non-Newtonian fluids, while we observe bouncing jets in a variety of Newtonian
fluids, including mineral oil poured by hand. A thin layer of air separates the
bouncing jet from the bath, and the relative motion replenishes the film of
air. Jets with one or two bounces are stable for a range of viscosity, jet flow
rate and velocity, and bath velocity. The bouncing phenomenon exhibits
hysteresis and multiple steady states.Comment: 9 pages, 7 figures. submitted to Physical Review
Anisotropic valence-->core x-ray fluorescence from a [Rh(en)3][Mn(N)(CN)5]·H2O single crystal: Experimental results and density functional calculations
High resolution x-ray fluorescence spectra have been recorded for emission in different directions from a single crystal of the compound [Rh(en)3][Mn(N)(CN)5]·H2O. The spectra are interpreted by comparison with density functional theory (DFT) electronic structure calculations. The Kbeta[double-prime] line, which is strongly polarized along the Mn–N axis, can be viewed as an N(2s)-->Mn(1s) transition, and the angular dependence is understood within the dipole approximation. The so-called Kbeta2,5 region has numerous contributions but is dominated by Mn(4p) and C(2s)-->Mn(1s) transitions. Transition energy splittings are found in agreement with those of calculated occupied molecular orbitals to within 1 eV. Computed relative transition probabilities reproduce experimentally observed trends
Road centre line simplification principles for angular segment analysis
Angular segment analysis is one of the most fundamental analyses in space syntax practice that helps understand movement, land-use and other socio-economic patterns. It was initially applied in axial segment maps and later was used in road centre line maps as an attempt to overcome the 'segment problem' (Turner, 2005). Furthermore, the growing need to examine large urban systems has led to the wide use of road centre line maps instead of the previously hand-drawn axial maps. However, this transition to such datasets has lacked systematic studies on what is required to convert a road centre line map into a segment map, in order to produce reliable results of the angular segment analysis. To date, no consensual methodology has been developed within the space syntax community. This paper attempts to clarify what a road centre line segment represents spatially and suggests principles and rules to simplify a road centre line map to a segment map. Based on previous experience, the simplification mostly relies on the following two principles: reducing the number of nodes in the dual graph representation of a street network; optimising the angular change between adjacent nodes of the dual graph when space allows it. In addition to the above general principles, we discuss rules for special and complex cases, e.g. roundabouts, underpasses, bridges etc. To evaluate these rules and principles comparisons are carried out between traditional axial and RCL unsimplified and simplified segment maps, to develop a good understanding of how changes in dual graph representation of a street network can affect space syntax measure of 'choice'. Correlations of angular segment choice values are performed in order to evaluate which simplification technique can approximate better the axial representation of actual human activity. The results show that using a raw road centre line data set raises several inconsistencies in the analysis results, and the progressive application of the different simplification techniques brings these results closer to those of a traditional axial segment map, and thus to a better representation of socio-economic activity. The purpose of simplification is to minimise inconsistencies to ensure maximum accuracy in the results of angular segment analysis
Cleaning lateral morphological features of the root canal:the role of streaming and cavitation
AIM: To investigate the effects of ultrasonic activation file type, lateral canal location and irrigant on the removal of a biofilm-mimicking hydrogel from a fabricated lateral canal. Additionally, the amount of cavitation and streaming was quantified for these parameters. METHODOLOGY: An intracanal sonochemical dosimetry method was used to quantify the cavitation generated by an IrriSafe 25 mm length, size 25 file inside a root canal model filled with filtered degassed/saturated water or three different concentrations of NaOCl. Removal of a hydrogel, demonstrated previously to be an appropriate biofilm mimic, was recorded to measure the lateral canal cleaning rate from two different instruments (IrriSafe 25 mm length, size 25 and K 21 mm length, size 15) activated with a P5 Suprasson (Satelec) at power P8.5 in degassed/saturated water or NaOCl. Removal rates were compared for significant differences using nonparametric Kruskal-Wallis and/or Mann-Whitney U-tests. Streaming was measured using high-speed particle imaging velocimetry at 250 kfps, analysing both the oscillatory and steady flow inside the lateral canals. RESULTS: There was no significant difference in amount of cavitation between tap water and oversaturated water (P = 0.538), although more cavitation was observed than in degassed water. The highest cavitation signal was generated with NaOCl solutions (1.0%, 4.5%, 9.0%) (P < 0.007) and increased with concentration (P < 0.014). The IrriSafe file outperformed significantly the K-file in removing hydrogel (P < 0.05). Up to 64% of the total hydrogel volume was removed after 20 s. The IrriSafe file typically outperformed the K-file in generating streaming. The oscillatory velocities were higher inside the lateral canal 3 mm compared to 6 mm from WL and were higher for NaOCl than for saturated water, which in turn was higher than for degassed water. CONCLUSIONS: Measurements of cavitation and acoustic streaming have provided insight into their contribution to cleaning. Significant differences in cleaning, cavitation and streaming were found depending on the file type and size, lateral canal location and irrigant used. In general, the IrriSafe file outperformed the K-file, and NaOCl performed better than the other irrigants tested. The cavitation and streaming measurements revealed that both contributed to hydrogel removal and both play a significant role in root canal cleaning
National scale modelling to test UK population growth and infrastructure scenarios
This paper describes an exploratory methodology used to study the national scale issues of
population growth and infrastructure implementation across the UK. The project was carried
out for the Government Office for Science in 2015, focussing on two key questions: how could
a “spatially driven” scenario provoke new thinking on accommodating forecast growth, and;
what would be the impact of transport infrastructure investments within this context.
Addressing these questions required the construction of a national scale spatial model that
also needed to integrate datasets on population and employment. Models were analysed
and profiled initially to identify existing relationships between the distribution of population
and employment against the spatial network. Based on these profiles, an experimental
methodology was used to firstly identify cities with the potential to accommodate growth,
then secondly to allocate additional population proportionally. This raises important questions
for discussion around which cities provide the benchmark for growth and why, as well as what
the optimal spatial conditions for population growth may be, and how this growth should be
accommodated locally.
Later the model was used to study the impact of High Speed Rail. As these proposed
infrastructure changes improve service (capacity, frequency, journey time), rather than
creating new topological connections, the model was adapted to be able to produce time based
catchments as an output. These catchments could then be expressed in terms of the workforce
population within an hour of every city (a potential travel to work area), as well as the number
of employment opportunities within an hour of every household
Humoral immune response and delayed type hypersensitivity to influenza vaccine in patients with diabetes mellitus
The antibody response and delayed type hypersensitivity reaction to commercially available trivalent influenza vaccine in 159 patients with diabetes mellitus was compared with response and reaction in 28 healthy volunteers. A correction for prevaccination titres was made. No differences were found between diabetic patients and control subjects with respect to antibody response to the three vaccine strains as measured by the difference between geometric mean titres of post- and prevaccination sera. In Type 1 (insulin-dependent) diabetic patients the incidence of non-responders to two vaccine components was significantly increased (p less than 0.05). The delayed type hypersensitivity reaction to influenza antigen was significantly decreased in patients with high concentrations of glycosylated haemoglobin (p less than 0.01). These findings suggest a role for impaired immune response in the increased influenza morbidity and mortality in patients with diabetes mellitus. Implications for therapy and vaccination strategy are discussed
- …
