1,052 research outputs found
Soliton attenuation and emergent hydrodynamics in fragile matter
Disordered packings of soft grains are fragile mechanical systems that loose
rigidity upon lowering the external pressure towards zero. At zero pressure, we
find that any infinitesimal strain-impulse propagates initially as a non-linear
solitary wave progressively attenuated by disorder. We demonstrate that the
particle fluctuations generated by the solitary-wave decay, can be viewed as a
granular analogue of temperature. Their presence is manifested by two emergent
macroscopic properties absent in the unperturbed granular packing: a finite
pressure that scales with the injected energy (akin to a granular temperature)
and an anomalous viscosity that arises even when the microscopic mechanisms of
energy dissipation are negligible. Consistent with the interpretation of this
state as a fluid-like thermalized state, the shear modulus remains zero.
Further, we follow in detail the attenuation of the initial solitary wave
identifying two distinct regimes : an initial exponential decay, followed by a
longer power law decay and suggest simple models to explain these two regimes.Comment: 8 pages, 3 Figure
Enhanced Resolution of Lossy Interferometry by Coherent Amplification of Single Photons
In the quantum sensing context most of the efforts to design novel quantum
techniques of sensing have been constrained to idealized, noise-free scenarios,
in which effects of environmental disturbances could be neglected. In this
work, we propose to exploit optical parametric amplification to boost
interferometry sensitivity in the presence of losses in a minimally invasive
scenario. By performing the amplification process on the microscopic probe
after the interaction with the sample, we can beat the losses detrimental
effect on the phase measurement which affects the single-photon state after its
interaction with the sample, and thus improve the achievable sensitivity.Comment: 4 + 3 pages, 3 + 5 figure
Quantum to classical transition via fuzzy measurements on high gain spontaneous parametric down-conversion
We consider the high gain spontaneous parametric down-conversion in a non
collinear geometry as a paradigmatic scenario to investigate the
quantum-to-classical transition by increasing the pump power, that is, the
average number of generated photons. The possibility of observing quantum
correlations in such macroscopic quantum system through dichotomic measurement
will be analyzed by addressing two different measurement schemes, based on
different dichotomization processes. More specifically, we will investigate the
persistence of non-locality in an increasing size n/2-spin singlet state by
studying the change in the correlations form as increases, both in the
ideal case and in presence of losses. We observe a fast decrease in the amount
of Bell's inequality violation for increasing system size. This theoretical
analysis is supported by the experimental observation of macro-macro
correlations with an average number of photons of about 10^3. Our results
enlighten the practical extreme difficulty of observing non-locality by
performing such a dichotomic fuzzy measurement.Comment: 15 pages, 18 figure
Solid friction between soft filaments
Any macroscopic deformation of a filamentous bundle is necessarily
accompanied by local sliding and/or stretching of the constituent filaments.
Yet the nature of the sliding friction between two aligned filaments
interacting through multiple contacts remains largely unexplored. Here, by
directly measuring the sliding forces between two bundled F-actin filaments, we
show that these frictional forces are unexpectedly large, scale logarithmically
with sliding velocity as in solid-like friction, and exhibit complex dependence
on the filaments' overlap length. We also show that a reduction of the
frictional force by orders of magnitude, associated with a transition from
solid-like friction to Stokes' drag, can be induced by coating F-actin with
polymeric brushes. Furthermore, we observe similar transitions in filamentous
microtubules and bacterial flagella. Our findings demonstrate how altering a
filament's elasticity, structure and interactions can be used to engineer
interfilament friction and thus tune the properties of fibrous composite
materials
General rules for bosonic bunching in multimode interferometers
We perform a comprehensive set of experiments that characterize bosonic
bunching of up to 3 photons in interferometers of up to 16 modes. Our
experiments verify two rules that govern bosonic bunching. The first rule,
obtained recently in [1,2], predicts the average behavior of the bunching
probability and is known as the bosonic birthday paradox. The second rule is
new, and establishes a n!-factor quantum enhancement for the probability that
all n bosons bunch in a single output mode, with respect to the case of
distinguishable bosons. Besides its fundamental importance in phenomena such as
Bose-Einstein condensation, bosonic bunching can be exploited in applications
such as linear optical quantum computing and quantum-enhanced metrology.Comment: 6 pages, 4 figures, and supplementary material (4 pages, 1 figure
Critical jamming of frictional grains in the generalized isostaticity picture
While frictionless spheres at jamming are isostatic, frictional spheres at
jamming are not. As a result, frictional spheres near jamming do not
necessarily exhibit an excess of soft modes. However, a generalized form of
isostaticity can be introduced if fully mobilized contacts at the Coulomb
friction threshold are considered as slipping contacts. We show here that, in
this framework, the vibrational density of states (DOS) of frictional discs
exhibits a plateau when the generalized isostaticity line is approached. The
crossover frequency to elastic behavior scales linearly with the distance from
this line. Moreover, we show that the frictionless limit, which appears
singular when fully mobilized contacts are treated elastically, becomes smooth
when fully mobilized contacts are allowed to slip.Comment: 4 pages, 4 figures, submitted to PR
Coupling between magnetic field and curvature in Heisenberg spins on surfaces with rotational symmetry
We study the nonlinear -model in an external magnetic field applied
on curved surfaces with rotational symmetry. The Euler-Lagrange equations
derived from the Hamiltonian yield the double sine-Gordon equation (DSG)
provided the magnetic field is tuned with the curvature of the surface. A
skyrmion appears like a solution for this model and surface deformations
are predicted at the sector where the spins point in the opposite direction to
the magnetic field. We also study some specific examples by applying the model
on three rotationally symmetric surfaces: the cylinder, the catenoid and the
hyperboloid. The coupling between a magnetic field and the curvature of the
substract is an interesting result and we believe that this issue may be
relevant to be applied in condensed matter systems, e.g., superconductors,
nematic liquid crystals, graphene and topological insulators.Comment: To be published in Physics Letters
Internalized Transphobia, Resilience, and Mental Health: Applying the Psychological Mediation Framework to Italian Transgender Individuals
Transgender and gender nonconforming (TGNC) people are a highly-stigmatized population. For this reason, they might internalize society’s normative gender attitudes and develop negative mental health outcomes. As an extension of the minority stress model, the psychological mediation framework sheds light on psychological processes through which anti-transgender discrimination might affect mental health. Within this framework, the current study aimed at assessing in 149 TGNC Italian individuals the role of internalized transphobia as a mediator between anti-transgender discrimination and mental health, considering resilience as the individual-level coping mechanism buffering this relationship. The results suggest that both indicators of internalized transphobia (i.e., shame and alienation) mediate the relationship between anti-transgender discrimination and depression, while only alienation mediates the relationship between anti-transgender discrimination and anxiety. Furthermore, the results suggest that the indirect relation between anti-transgender discrimination and anxiety through alienation is conditional on low and moderate levels of resilience. Findings have important implications for clinical practice and psycho-social interventions to reduce stigma and stress caused by interpersonal and individual stigma
Density of states in random lattices with translational invariance
We propose a random matrix approach to describe vibrational excitations in
disordered systems. The dynamical matrix M is taken in the form M=AA^T where A
is some real (not generally symmetric) random matrix. It guaranties that M is a
positive definite matrix which is necessary for mechanical stability of the
system. We built matrix A on a simple cubic lattice with translational
invariance and interaction between nearest neighbors. We found that for certain
type of disorder phonons cannot propagate through the lattice and the density
of states g(w) is a constant at small w. The reason is a breakdown of affine
assumptions and inapplicability of the elasticity theory. Young modulus goes to
zero in the thermodynamic limit. It strongly reminds of the properties of a
granular matter at the jamming transition point. Most of the vibrations are
delocalized and similar to diffusons introduced by Allen, Feldman et al., Phil.
Mag. B v.79, 1715 (1999).Comment: 4 pages, 5 figure
- …
