2,385 research outputs found
Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source
Quantum information technology strongly relies on coupling of optical photons
with narrowband quantum systems, such as quantum dots, color centers, and
atomic systems. This coupling requires matching the optical wavelength and
bandwidth to the desired system, which presents a considerable problem for most
available sources of quantum light. Here we demonstrate coupling of alkali
dipole transitions with a tunable source of photon pairs. Our source is based
on spontaneous parametric down-conversion in a triply-resonant
whispering-gallery mode resonator. For this, we have developed novel wavelength
tuning mechanisms, which allow for a coarse tuning to either cesium or rubidium
wavelength with subsequent continuous fine-tuning to the desired transition. As
a demonstration of the functionality of the source, we performed a heralded
single photon measurement of the atomic decay. We present a major advance in
controlling the spontaneous down-conversion process, which makes our bright
source of single photons now compatible with a plethora of narrow-band resonant
systems.Comment: 8 pages, 5 figure
Frequency tuning of a triply-resonant whispering-gallery mode resonator to MHz wide transitions for proposed quantum repeater schemes
Quantum repeaters rely on an interfacing of flying qubits with quantum
memories. The most common implementations include a narrowband single photon
matched in bandwidth and central frequency to an atomic system. Previously, we
demonstrated the compatibility of our versatile source of heralded single
photons, which is based on parametric down-conversion in a triply-resonant
whispering-gallery mode resonator, with alkaline transitions [Schunk et al.,
Optica 2, 773 (2015)]. In this paper, we analyze our source in terms of phase
matching, available wavelength-tuning mechanisms, and applications to
narrow-band atomic systems. We resonantly address the D1 transitions of cesium
and rubidium with this optical parametric oscillator pumped above its
oscillation threshold. Below threshold, the efficient coupling of single
photons to atomic transitions heralded by single telecom-band photons is
demonstrated. Finally, we present an accurate analytical description of our
observations. Providing the demonstrated flexibility in connecting various
atomic transitions with telecom wavelengths, we show a promising approach to
realize an essential building block for quantum repeaters.Comment: 18 pages, 14 figure
Theory of excitons in cubic III-V semiconductor GaAs, InAs and GaN quantum dots: fine structure and spin relaxation
Exciton fine structures in cubic III-V semiconductor GaAs, InAs and GaN
quantum dots are investigated systematically and the exciton spin relaxation in
GaN quantum dots is calculated by first setting up the effective exciton
Hamiltonian. The electron-hole exchange interaction Hamiltonian, which consists
of the long- and short-range parts, is derived within the effective-mass
approximation by taking into account the conduction, heavy- and light-hole
bands, and especially the split-off band. The scheme applied in this work
allows the description of excitons in both the strong and weak confinement
regimes. The importance of treating the direct electron-hole Coulomb
interaction unperturbatively is demonstrated. We show in our calculation that
the light-hole and split-off bands are negligible when considering the exciton
fine structure, even for GaN quantum dots, and the short-range exchange
interaction is irrelevant when considering the optically active doublet
splitting. We point out that the long-range exchange interaction, which is
neglected in many previous works, contributes to the energy splitting between
the bright and dark states, together with the short-range exchange interaction.
Strong dependence of the optically active doublet splitting on the anisotropy
of dot shape is reported. Large doublet splittings up to 600 eV, and even
up to several meV for small dot size with large anisotropy, is shown in GaN
quantum dots. The spin relaxation between the lowest two optically active
exciton states in GaN quantum dots is calculated, showing a strong dependence
on the dot anisotropy. Long exciton spin relaxation time is reported in GaN
quantum dots. These findings are in good agreement with the experimental
results.Comment: 22+ pages, 16 figures, several typos in the published paper are
corrected in re
Squeezed vacuum states from a whispering gallery mode resonator
Squeezed vacuum states enable optical measurements below the quantum limit
and hence are a valuable resource for applications in quantum metrology and
also quantum communication. However, most available sources require high pump
powers in the milliwatt range and large setups, which hinders real world
applications. Furthermore, degenerate operation of such systems presents a
challenge. Here, we use a compact crystalline whispering gallery mode resonator
made of lithium niobate as a degenerate parametric oscillator. We demonstrate
about 1.4 dB noise reduction below the shot noise level for only 300
of pump power in degenerate single mode operation. Furthermore,
we report a record pump threshold as low as 1.35 . Our results
show that the whispering gallery based approach presents a promising platform
for a compact and efficient source for nonclassical light.Comment: 2019 Optical Society of America. Users may use, reuse,
and build upon the article, or use the article for text or data mining, so
long as such uses are for non-commercial purposes and appropriate attribution
is maintained. All other rights are reserve
Is there diquark clustering in the nucleon?
It is shown that the instanton-induced interaction in qq pairs, iterated in
t-channel, leads to a meson-exchange interactions between quarks. In this way
one can achieve a simultaneous understanding of low-lying mesons, baryons and
the nuclear force. The discussion is general and does not necessarily rely on
the instanton-induced interaction. Any nonperturbative gluonic interaction
between quarks, which is a source of the dynamical chiral symmetry breaking and
explains the - mass splitting, will imply an effective meson
exchange picture in baryons. Due to the (anti)screening there is a big
difference between the initial 't Hooft interaction and the effective
meson-exchange interaction. It is demonstrated that the effective
meson-exchange interaction, adjusted to the baryon spectrum, does not bind the
scalar diquark and does not induce any significant quark-diquark clustering in
the nucleon because of the nontrivial role played by the Pauli principle.Comment: Final version to appear in Phys. Rev. D; typos have been corrected;
some formulae have been written in a more detailed form; some references have
been update
Thermalization of coupled atom-light states in the presence of optical collisions
The interaction of a two-level atomic ensemble with a quantized single mode
electromagnetic field in the presence of optical collisions (OC) is
investigated both theoretically and experimentally. The main accent is made on
achieving thermal equilibrium for coupled atom-light states (in particular
dressed states). We propose a model of atomic dressed state thermalization that
accounts for the evolution of the pseudo-spin Bloch vector components and
characterize the essential role of the spontaneous emission rate in the
thermalization process. Our model shows that the time of thermalization of the
coupled atom-light states strictly depends on the ratio of the detuning and the
resonant Rabi frequency. The predicted time of thermalization is in the
nanosecond domain and about ten times shorter than the natural lifetime at full
optical power in our experiment. Experimentally we are investigating the
interaction of the optical field with rubidium atoms in an ultra-high pressure
buffer gas cell under the condition of large atom-field detuning comparable to
the thermal energy in frequency units. In particular, an observed detuning
dependence of the saturated lineshape is interpreted as evidence for thermal
equilibrium of coupled atom-light states. A significant modification of
sideband intensity weights is predicted and obtained in this case as well.Comment: 14 pages, 12 figures; the content was edite
On the and as Bound States and Approximate Nambu-Goldstone Bosons
We reconsider the two different facets of and mesons as
bound states and approximate Nambu-Goldstone bosons. We address several topics,
including masses, mass splittings between and and between and
, meson wavefunctions, charge radii, and the wavefunction overlap.Comment: 15 pages, late
Ab-initio prediction of the electronic and optical excitations in polythiophene: isolated chains versus bulk polymer
We calculate the electronic and optical excitations of polythiophene using
the GW approximation for the electronic self-energy, and include excitonic
effects by solving the electron-hole Bethe-Salpeter equation. Two different
situations are studied: excitations on isolated chains and excitations on
chains in crystalline polythiophene. The dielectric tensor for the crystalline
situation is obtained by modeling the polymer chains as polarizable line
objects, with a long-wavelength polarizability tensor obtained from the
ab-initio polarizability function of the isolated chain. With this model
dielectric tensor we construct a screened interaction for the crystalline case,
including both intra- and interchain screening. In the crystalline situation
both the quasi-particle band gap and the exciton binding energies are
drastically reduced in comparison with the isolated chain. However, the optical
gap is hardly affected. We expect this result to be relevant for conjugated
polymers in general.Comment: 15 pages including 4 figures; to appear in Phys. Rev. B, 6/15/200
Tight-binding g-Factor Calculations of CdSe Nanostructures
The Lande g-factors for CdSe quantum dots and rods are investigated within
the framework of the semiempirical tight-binding method. We describe methods
for treating both the n-doped and neutral nanostructures, and then apply these
to a selection of nanocrystals of variable size and shape, focusing on
approximately spherical dots and rods of differing aspect ratio. For the
negatively charged n-doped systems, we observe that the g-factors for
near-spherical CdSe dots are approximately independent of size, but show strong
shape dependence as one axis of the quantum dot is extended to form rod-like
structures. In particular, there is a discontinuity in the magnitude of
g-factor and a transition from anisotropic to isotropic g-factor tensor at
aspect ratio ~1.3. For the neutral systems, we analyze the electron g-factor of
both the conduction and valence band electrons. We find that the behavior of
the electron g-factor in the neutral nanocrystals is generally similar to that
in the n-doped case, showing the same strong shape dependence and discontinuity
in magnitude and anisotropy. In smaller systems the g-factor value is dependent
on the details of the surface model. Comparison with recent measurements of
g-factors for CdSe nanocrystals suggests that the shape dependent transition
may be responsible for the observations of anomalous numbers of g-factors at
certain nanocrystal sizes.Comment: 15 pages, 6 figures. Fixed typos to match published versio
- …
