351 research outputs found
Determination of the complex refractive index and optical bandgap of CH3NH3PbI3 thin films
We report the complex refractive index of methylammonium lead iodide CH3NH3PbI3 perovskite thin films obtained by means of variable angle spectroscopic ellipsometry and transmittance reflectance spectrophotometry in the wavelength range of 190 amp; 8201;nm to 2500 amp; 8201;nm. The film thickness and roughness layer thickness are determined by minimizing a global unbiased estimator in the region where the spectrophotometry and ellipsometry spectra overlap. We then determine the optical bandgap and Urbach energy from the absorption coefficient, by means of a fundamental absorption model based on band fluctuations in direct emiconductors. This model merges both the Urbach tail and the absorption edge regions in a single equation. In this way, we increase the fitting region and extend the conventional amp; 945; amp; 8463; amp; 969; 2 plot method to obtain accurate bandgap value
Ginzburg Criterion for Coulombic Criticality
To understand the range of close-to-classical critical behavior seen in
various electrolytes, generalized Debye-Hueckel theories (that yield density
correlation functions) are applied to the restricted primitive model of
equisized hard spheres. The results yield a Landau-Ginzburg free-energy
functional for which the Ginzburg criterion can be explicitly evaluated. The
predicted scale of crossover from classical to Ising character is found to be
similar in magnitude to that derived for simple fluids in comparable fashion.
The consequences in relation to experiments are discussed briefly.Comment: 4 pages, revtex, 2 tables (latex2.09 required due to revtex's
incompatibility with latex2e tables
Universality class of criticality in the restricted primitive model electrolyte
The 1:1 equisized hard-sphere electrolyte or restricted primitive model has
been simulated via grand-canonical fine-discretization Monte Carlo. Newly
devised unbiased finite-size extrapolation methods using temperature-density,
(T, rho), loci of inflections, Q = ^2/ maxima, canonical and C_V
criticality, yield estimates of (T_c, rho_c) to +- (0.04, 3)%. Extrapolated
exponents and Q-ratio are (gamma, nu, Q_c) = [1.24(3), 0.63(3); 0.624(2)] which
support Ising (n = 1) behavior with (1.23_9, 0.630_3; 0.623_6), but exclude
classical, XY (n = 2), SAW (n = 0), and n = 1 criticality with potentials
phi(r)>Phi/r^{4.9} when r \to \infty
Towards accurate and precise T1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions
Mapping of the longitudinal relaxation time (T1) and extracellular volume (ECV) offers a means of identifying pathological changes in myocardial tissue, including diffuse changes that may be invisible to existing T1-weighted methods. This technique has recently shown strong clinical utility for pathologies such as Anderson- Fabry disease and amyloidosis and has generated clinical interest as a possible means of detecting small changes in diffuse fibrosis; however, scatter in T1 and ECV estimates offers challenges for detecting these changes, and bias limits comparisons between sites and vendors. There are several technical and physiological pitfalls that influence the accuracy (bias) and precision (repeatability) of T1 and ECV mapping methods. The goal of this review is to describe the most significant of these, and detail current solutions, in order to aid scientists and clinicians to maximise the utility of T1 mapping in their clinical or research setting. A detailed summary of technical and physiological factors, issues relating to contrast agents, and specific disease-related issues is provided, along with some considerations on the future directions of the field. Towards accurate and precise T1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions. Available from: https://www.researchgate.net/publication/317548806_Towards_accurate_and_precise_T1_and_extracellular_volume_mapping_in_the_myocardium_a_guide_to_current_pitfalls_and_their_solutions [accessed Jun 13, 2017]
Dipolar origin of the gas-liquid coexistence of the hard-core 1:1 electrolyte model
We present a systematic study of the effect of the ion pairing on the
gas-liquid phase transition of hard-core 1:1 electrolyte models. We study a
class of dipolar dimer models that depend on a parameter R_c, the maximum
separation between the ions that compose the dimer. This parameter can vary
from sigma_{+/-} that corresponds to the tightly tethered dipolar dimer model,
to R_c --> infinity, that corresponds to the Stillinger-Lovett description of
the free ion system. The coexistence curve and critical point parameters are
obtained as a function of R_c by grand canonical Monte Carlo techniques. Our
results show that this dependence is smooth but non-monotonic and converges
asymptotically towards the free ion case for relatively small values of R_c.
This fact allows us to describe the gas-liquid transition in the free ion model
as a transition between two dimerized fluid phases. The role of the unpaired
ions can be considered as a perturbation of this picture.Comment: 16 pages, 13 figures, submitted to Physical Review
Classical-to-critical crossovers from field theory
We extent the previous determinations of nonasymptotic critical behavior of
Phys. Rev B32, 7209 (1985) and B35, 3585 (1987) to accurate expressions of the
complete classical-to-critical crossover (in the 3-d field theory) in terms of
the temperature-like scaling field (i.e., along the critical isochore) for : 1)
the correlation length, the susceptibility and the specific heat in the
homogeneous phase for the n-vector model (n=1 to 3) and 2) for the spontaneous
magnetization (coexistence curve), the susceptibility and the specific heat in
the inhomogeneous phase for the Ising model (n=1). The present calculations
include the seventh loop order of Murray and Nickel (1991) and closely account
for the up-to-date estimates of universal asymptotic critical quantities
(exponents and amplitude combinations) provided by Guida and Zinn-Justin [J.
Phys. A31, 8103 (1998)].Comment: 4 figs, 4 program documents in appendix, some corrections adde
Deep saltwater in Chalk of North-West Europe: origin, interface characteristics and development over geological time
T1 mapping in cardiac MRI
Quantitative myocardial and blood T1 have recently achieved clinical utility in numerous pathologies, as they provide non-invasive tissue characterization with the potential to replace invasive biopsy. Native T1 time (no contrast agent), changes with myocardial extracellular water (edema, focal or diffuse fibrosis), fat, iron, and amyloid protein content. After contrast, the extracellular volume fraction (ECV) estimates the size of the extracellular space and identifies interstitial disease. Spatially resolved quantification of these biomarkers (so-called T1 mapping and ECV mapping) are steadily becoming diagnostic and prognostically useful tests for several heart muscle diseases, influencing clinical decision-making with a pending second consensus statement due mid-2017. This review outlines the physics involved in estimating T1 times and summarizes the disease-specific clinical and research impacts of T1 and ECV to date. We conclude by highlighting some of the remaining challenges such as their community-wide delivery, quality control, and standardization for clinical practice
- …
