1,343 research outputs found

    Ab initio study of magnetism at the TiO2/LaAlO3 interface

    Get PDF
    In this paper we study the possible relation between the electronic and magnetic structure of the TiO2/LaAlO3 interface and the unexpected magnetism found in undoped TiO2 films grown on LaAlO3_3. We concentrate on the role played by structural relaxation and interfacial oxygen vacancies. LaAlO3 has a layered structure along the (001) direction with alternating LaO and AlO2 planes, with nominal charges of +1 and -1, respectively. As a consequence of that, an oxygen deficient TiO2 film with anatase structure will grow preferently on the AlO2 surface layer. We have therefore performed ab-initio calculations for superlattices with TiO2/AlO2 interfaces with interfacial oxygen vacancies. Our main results are that vacancies lead to a change in the valence state of neighbour Ti atoms but not necessarily to a magnetic solution and that the appearance of magnetism depends also on structural details, such as second neighbor positions. These results are obtained using both the LSDA and LSDA+U approximations.Comment: Accepted for publication in Journal of Materials Scienc

    Theory of STM Spectroscopy of Kondo Ions on Metal Surfaces

    Full text link
    The conduction electron density of states nearby a single magnetic impurity, as measured recently by scanning tunneling microscopy (STM), is calculated. It is shown that the Kondo effect induces a narrow Fano resonance as an intrinsic feature in the conduction electron density of states. The line shape varies with the distance between STM tip and impurity, in qualitative agreement with experiments, and is sensitive to details of the band structure. For a Co impurity the experimentally observed width and shift of the Kondo resonance are in accordance with those obtained from a combination of band structure and strongly correlated calculations.Comment: 5 pages, 4 figures, presented at the NATO Advanced Research Workshop on "Size Dependent Magnetic Scattering", Pecs, Hungary, May 28 - June 1, 200

    Appearance of room temperature ferromagnetism in Cu-doped TiO2δ_{2-\delta} films

    Full text link
    In recent years there has been an intense search for room temperature ferromagnetism in doped dilute semiconductors, which have many potentially applications in spintronics and optoelectronics. We report here the unexpected observation of significant room temperature ferromagnetism in a semiconductor doped with nonmagnetic impurities, Cu-doped TiO2_2 thin films grown by Pulsed Laser Deposition. The magnetic moment, calculated from the magnetization curves, resulted surprisingly large, about 1.5 μB\mu_B per Cu atom. A large magnetic moment was also obtained from ab initio calculations using the supercell method for TiO2_2 with Cu impurities, but only if an oxygen vacancy in the nearest-neighbour shell of Cu was present. This result suggests that the role of oxygen vacancies is crucial for the appearance of ferromagnetism. The calculations also predict that Cu doping favours the formation of oxygen vacancies.Comment: 4 pages, 3 figures, published in Phys. Rev. B (Rapid Comm.

    Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record : A review

    Get PDF
    We appreciate very helpful reviews by Dr. Martin Stokes and three anonymous reviewers and editor Dr. Richard Marston. We also appreciate the encouragement for writing this paper from Dr. Timothy Horscroft. We acknowledge support of the sponsors of the Fluvial Systems Research Group consortium, BP, BG, Chevron, ConocoPhillips and Total.Peer reviewedPostprin

    Molecular dynamics study of the fragmentation of silicon doped fullerenes

    Full text link
    Tight binding molecular dynamics simulations, with a non orthogonal basis set, are performed to study the fragmentation of carbon fullerenes doped with up to six silicon atoms. Both substitutional and adsorbed cases are considered. The fragmentation process is simulated starting from the equilibrium configuration in each case and imposing a high initial temperature to the atoms. Kinetic energy quickly converts into potential energy, so that the system oscillates for some picoseconds and eventually breaks up. The most probable first event for substituted fullerenes is the ejection of a C2 molecule, another very frequent event being that one Si atom goes to an adsorbed position. Adsorbed Si clusters tend to desorb as a whole when they have four or more atoms, while the smaller ones tend to dissociate and sometimes interchange positions with the C atoms. These results are compared with experimental information from mass abundance spectroscopy and the products of photofragmentation.Comment: Seven two-column pages, six postscript figures. To be published in Physical Review

    Slow dynamics and aging in spin-glasses

    Full text link
    Contribution presented by Eric Vincent in the Conference `Complex Behaviour of Glassy Systems', Sitges, Barcelona, Spain, June, 1996. It contains a review of the experimental results on Slow dynamics and aging in spin-glasses. It also presents their comparison with recent theoretical developments in the description of the out of equilibrium dynamics of disordered systems; namely, the trap model and the mean-field theory.Comment: 35 pages, 12 figures, macro lmamult.sty (included

    Theory of the Fano Resonance in the STM Tunneling Density of States due to a Single Kondo Impurity

    Full text link
    The conduction electron density of states nearby single magnetic impurities, as measured recently by scanning tunneling microscopy (STM), is calculated, taking into account tunneling into conduction electron states only. The Kondo effect induces a narrow Fano resonance in the conduction electron density of states, while scattering off the d-level generates a weakly energy dependent Friedel oscillation. The line shape varies with the distance between STM tip and impurity, in qualitative agreement with experiments, but is very sensitive to details of the band structure. For a Co impurity the experimentally observed width and shift of the Kondo resonance are in accordance with those obtained from a combination of band structure and strongly correlated calculations.Comment: 4 pages, ReVTeX + 4 figures (Encapsulated Postscript), submitted to PR

    Effect of Substitutional Impurities on the Electronic States and Conductivity of Crystals with Half-filled Band

    Full text link
    Low temperature quantum corrections to the density of states (DOS) and the conductivity are examined for a two-dimensional(2D) square crystal with substitutional impurities. By summing the leading logarithmic corrections to the DOS its energy dependence near half-filling is obtained. It is shown that substitutional impurities do not suppress the van Hove singularity at the middle of the band, however they change its energy dependence strongly. Weak disorder due to substitutional impurities in the three-dimensional simple cubic lattice results in a shallow dip in the center of the band. The calculation of quantum corrections to the conductivity of a 2D lattice shows that the well-known logarithmic localization correction exists for all band fillings. Furthermore the magnitude of the correction increases as half-filling is approached. The evaluation of the obtained analytical results shows evidence for delocalized states in the center of the band of a 2D lattice with substitutional impurities

    Theory of Spin-Resolved Auger-Electron Spectroscopy from Ferromagnetic 3d-Transition Metals

    Full text link
    CVV Auger electron spectra are calculated for a multi-band Hubbard model including correlations among the valence electrons as well as correlations between core and valence electrons. The interest is focused on the ferromagnetic 3d-transition metals. The Auger line shape is calculated from a three-particle Green function. A realistic one-particle input is taken from tight-binding band-structure calculations. Within a diagrammatic approach we can distinguish between the \textit{direct} correlations among those electrons participating in the Auger process and the \textit{indirect} correlations in the rest system. The indirect correlations are treated within second-order perturbation theory for the self-energy. The direct correlations are treated using the valence-valence ladder approximation and the first-order perturbation theory with respect to valence-valence and core-valence interactions. The theory is evaluated numerically for ferromagnetic Ni. We discuss the spin-resolved quasi-particle band structure and the Auger spectra and investigate the influence of the core hole.Comment: LaTeX, 12 pages, 8 eps figures included, Phys. Rev. B (in press
    corecore