533 research outputs found
First-Order Vortex Lattice Melting and Magnetization of YBaCuO$_{7-\delta}
We present the first non-mean-field calculation of the magnetization
of YBaCuO both above and below the flux-lattice melting
temperature . The results are in good agreement with experiment as a
function of transverse applied field . The effects of fluctuations in both
order parameter and magnetic induction are included in the
Ginzburg-Landau free energy functional: fluctuates within the
lowest Landau level in each layer, while fluctuates uniformly according to
the appropriate Boltzmann factor. The second derivative is predicted to be negative throughout the vortex liquid state and
positive in the solid state. The discontinuities in entropy and magnetization
at melting are calculated to be per flux line per layer and
~emu~cm at a field of 50 kOe.Comment: 11 pages, 4 PostScript figures in one uuencoded fil
Critical Fields and Critical Currents in MgB2
We review recent measurements of upper (Hc2) and lower (Hc1) critical fields
in clean single crystals of MgB2, and their anisotropies between the two
principal crystallographic directions. Such crystals are far into the "clean
limit" of Type II superconductivity, and indeed for fields applied in the
c-direction, the Ginzburg-Landau parameter k is only about 3, just large enough
for Type II behaviour. Because m0Hc2 is so low, about 3 T for fields in the
c-direction, MgB2 has to be modified for it to become useful for high-current
applications. It should be possible to increase Hc2 by the introduction of
strong electron scattering (but because of the electronic structure and the
double gap that results, the scatterers will have to be chosen carefully). In
addition, pinning defects on a scale of a few nm will have to be engineered in
order to enhance the critical current density at high fields.Comment: BOROMAG Conference Invited paper. To appear in Supercond. Sci. Tec
Scaling of the Equilibrium Magnetization in the Mixed State of Type-II Superconductors
We discuss the analysis of mixed-state magnetization data of type-II
superconductors using a recently developed scaling procedure. It is based on
the fact that, if the Ginzburg-Landau parameter kappa does not depend on
temperature, the magnetic susceptibility is a universal function of H/H_c2(T),
leading to a simple relation between magnetizations at different temperatures.
Although this scaling procedure does not provide absolute values of the upper
critical fieldH_c2(T), its temperature variation can be established rather
accurately. This provides an opportunity to validate theoretical models that
are usually employed for the evaluation of H_c2(T) from equilibrium
magnetization data. In the second part of the paper we apply this scaling
procedure for a discussion of the notorious first order phase transition in the
mixed state of high temperature superconductors. Our analysis, based on
experimental magnetization data available in the literature, shows that the
shift of the magnetization accross the transition may adopt either sign,
depending on the particular chosen sample. We argue that this observation is
inconsistent with the interpretation that this transition always represents the
melting transition of the vortex lattice.Comment: 18 pages, 12 figure
Doping and Irradiation Controlled Vortex Pinning Behavior in BaFe2(As1-xPx)2 Single Crystals
We report on the systematic evolution of vortex pinning behavior in isovalent
doped single crystals of BaFe2(As1-xPx)2. Proceeding from optimal doped to
ovedoped samples, we find a clear transfor- mation of the magnetization
hysteresis from a fishtail behavior to a distinct peak effect followed by a
reversible magnetization and Bean Livingston surface barriers. Strong point
pinning dominates the vortex behavior at low fields whereas weak collective
pinning determines the behavior at higher fields. In addition to doping
effects, we show that particle irradiation by energetic protons can tune vortex
pinning in these materials.Comment: 4 pages, 4 figures,significant change of eraly version, accepted by
PRB rapid communication
Surface plasmons at single nanoholes in Au-films
The generation of surface plasmon polaritons (SPP's) at isolated nanoholes in
100 nm thick Au films is studied using near-field scanning optical microscopy
(NSOM). Finite-difference time-domain calculations, some explicitly including a
model of the NSOM tip, are used to interpret the results. We find the holes act
as point-like sources of SPP's and demonstrate that interference between SPP's
and a directly transmitted wave allows for determination of the wavelength,
phase, and decay length of the SPP. The near-field intensity patterns can be
manipulated by varying the angle and polarization of the incident beam.Comment: 12 pages, 3 figure
Growth and Superconductivity of FeSex Crystals
Iron selenide (FeSex) crystals with lateral dimensions up to millimeters were
grown via a vapor self-transport method. The crystals consist of the dominant
alpha - phase with trace amounts of beta- phase as identified by powder x-ray
diffraction. With four-probe resistance measurements we obtained a
zero-resistance critical temperature of 7.5 K and a superconducting onset
transition temperature of up to 11.8 K in zero magnetic field as well as an
anisotropy of 1.5 +- 0.1 for the critical field. Magnetization measurements on
individual crystals reveal the co-existence of superconductivity and
ferromagnetism.Comment: To appear in Applied Physics Letter
Characteristics of First-Order Vortex Lattice Melting: Jumps in Entropy and Magnetization
We derive expressions for the jumps in entropy and magnetization
characterizing the first-order melting transition of a flux line lattice. In
our analysis we account for the temperature dependence of the Landau parameters
and make use of the proper shape of the melting line as determined by the
relative importance of electromagnetic and Josephson interactions. The results
agree well with experiments on anisotropic YBaCuO and
layered BiSrCaCuO materials and reaffirm the validity of
the London model.Comment: 4 pages. We have restructured the paper to emphasize that in the
London scaling regime (appropriate for YBCO) our results are essentially
exact. We have also emphasized that a major controversy over the relevance of
the London model to describe VL melting has been settled by this wor
Local probe of vortex pinning energies in the Bose glass
Columnar defects provide strong pinning centers for vortices in high-T_c superconductors, increasing global critical currents. Using a magnetometer array of micron dimensions, we characterize the local held profiles in untwinned single crystals of YBa_2Cu_3O_(7-δ) with equivalent columnar defect densities B_φ. We find that the critical current is large only where the internal magnetic field BB _ φ, the critical current is sharply reduced. We model both local and global critical current measurements by generalizing the Bean picture to the case of irradiated high-T_c superconductors
- …
