1,238 research outputs found

    Evaluation of a composite mobile holographic nondestructive test system

    Get PDF
    A simplified theoretical model for the interpretation of the double-exposure holographic interference fringe loci due to the general three-dimensional displacements was derived for the specific composite mobile holographic nondestructive test system. The model, representing a good approximation to a more tedious theoretical result, predicts that a combination of in-plane and out-of-plane displacements of the surface will produce concentric circular-shaped fringe patterns with locations of their center affected by the displacements. Appropriate experiments were designed and carried out for the test of the validity of the theory. These experiments include the taking of double-exposure holograms of in-plane translations and combined in-plane and out-of-plane translations. The simplified model agreed quite well with the experimental results. Experimentally observed effects due to the curvature of the test plate and the variations of the angles of incidence of the laser light suggest that in order for the simplified model to be able to predict the test results more accurately, incidence and reflection of the laser light should be chosen as nearly perpendicular to the surface of the tested object as possible

    Fluid Models of Many-server Queues with Abandonment

    Full text link
    We study many-server queues with abandonment in which customers have general service and patience time distributions. The dynamics of the system are modeled using measure- valued processes, to keep track of the residual service and patience times of each customer. Deterministic fluid models are established to provide first-order approximation for this model. The fluid model solution, which is proved to uniquely exists, serves as the fluid limit of the many-server queue, as the number of servers becomes large. Based on the fluid model solution, first-order approximations for various performance quantities are proposed

    Quantum Cosmology for a Quadratic Theory of Gravity

    Full text link
    For pure fourth order (LR2{\cal{L}} \propto R^2) quantum cosmology the Wheeler-DeWitt equation is solved exactly for the closed homogeneous and isotropic model. It is shown that by imposing as boundary condition that Ψ=0\Psi = 0 at the origin of the universe the wave functions behave as suggested by Vilenkin.Comment: 13 pages, latex,no figure

    Extended Gravity Theories and the Einstein-Hilbert Action

    Get PDF
    I discuss the relation between arbitrarily high-order theories of gravity and scalar-tensor gravity at the level of the field equations and the action. I show that (2n+4)(2n+4)-order gravity is dynamically equivalent to Brans-Dicke gravity with an interaction potential for the Brans-Dicke field and nn further scalar fields. This scalar-tensor action is then conformally equivalent to the Einstein-Hilbert action with n+1n+1 scalar fields. This clarifies the nature and extent of the conformal equivalence between extended gravity theories and general relativity with many scalar fields.Comment: 12 pages, Plain Latex, SUSSEX-AST-93/7-

    Cosmological Gravitational Wave in a Gravity with Quadratic Order Curvature Couplings

    Get PDF
    We present a set of equations describing the cosmological gravitational wave in a gravity theory with quadratic order gravitational coupling terms which naturally arise in quantum correction procedures. It is known that the gravitational wave equation in the gravity theories with a general f(R)f(R) term in the action leads to a second order differential equation with the only correction factor appearing in the damping term. The case for a RabRabR^{ab} R_{ab} term is completely different. The gravitational wave is described by a fourth order differential equation both in time and space. However, curiously, we find that the contributions to the background evolution are qualitatively the same for both terms.Comment: 4 pages, revtex, no figure

    Evolution of the Bianchi I, the Bianchi III and the Kantowski-Sachs Universe: Isotropization and Inflation

    Get PDF
    We study the Einstein-Klein-Gordon equations for a convex positive potential in a Bianchi I, a Bianchi III and a Kantowski-Sachs universe. After analysing the inherent properties of the system of differential equations, the study of the asymptotic behaviors of the solutions and their stability is done for an exponential potential. The results are compared with those of Burd and Barrow. In contrast with their results, we show that for the BI case isotropy can be reached without inflation and we find new critical points which lead to new exact solutions. On the other hand we recover the result of Burd and Barrow that if inflation occurs then isotropy is always reached. The numerical integration is also done and all the asymptotical behaviors are confirmed.Comment: 22 pages, 12 figures, Self-consistent Latex2e File. To be published in Phys. Rev.

    Classical and Quantum Solutions and the Problem of Time in R2R^2 Cosmology

    Get PDF
    We have studied various classical solutions in R2R^2 cosmology. Especially we have obtained general classical solutions in pure R2R^2\ cosmology. Even in the quantum theory, we can solve the Wheeler-DeWitt equation in pure R2R^2\ cosmology exactly. Comparing these classical and quantum solutions in R2R^2\ cosmology, we have studied the problem of time in general relativity.Comment: 17 pages, latex, no figure, one reference is correcte

    Disappearing cosmological constant in f(R) gravity

    Full text link
    For higher-derivative f(R) gravity where R is the Ricci scalar, a class of models is proposed which produce viable cosmology different from the LambdaCDM one at recent times and satisfy cosmological, Solar system and laboratory tests. These models have both flat and de Sitter space-times as particular solutions in the absence of matter. Thus, a cosmological constant is zero in flat space-time, but appears effectively in a curved one for sufficiently large R. A 'smoking gun' for these models would be small discrepancy in values of the slope of the primordial perturbation power spectrum determined from galaxy surveys and CMB fluctuations. On the other hand, a new problem for dark energy models based on f(R) gravity is pointed which is connected with possible overproduction of new massive scalar particles (scalarons) arising in this theory in the very early Universe.Comment: 8 pages, footnote clarified, grammatical typo corrected, references added, final version to be published in JETP

    An Accountability Plan

    Get PDF

    Academic Librarians with Disabilities: A Literature Review

    Get PDF
    Libraries\u27 discussion of disabilities is normally focused on the patrons who are served and not the em-ployees who work within the walls of the institution. The population of adults with disabilities in the United States is growing, and the current research results show that the number of librarians who iden-tify as having disabilities is not close to equally representing the population in the profession. This paper reviews the literature written about academic librarians with disabilities and investigates the issues that are being faced by those librarians with disabilities and the hindrances that are keeping that representa-tion level reduced in the profession. The most common difficulties faced are issues with how library ser-vices are traditionally provided, disclosure, accommodation, stigma, and the treatment of disabilities by colleagues. This paper also discusses the changes needed in the profession to address the needs of librar-ians with disabilities
    corecore