192 research outputs found

    Isogeometric BDDC Preconditioning with Deluxe Scaling

    Get PDF
    A balancing domain decomposition by constraints (BDDC) preconditioner with a novel scaling, introduced by Dohrmann for problems with more than one variable coefficient and here denoted as deluxe scaling, is extended to isogeometric analysis of scalar elliptic problems. This new scaling turns out to be more powerful than the standard ?- and stiffness scalings considered in a previous isogeometric BDDC study. Our h-analysis shows that the condition number of the resulting deluxe BDDC preconditioner is scalable with a quasi-optimal polylogarithmic bound which is also independent of coefficient discontinuities across subdomain interfaces. Extensive numerical experiments support the theory and show that the deluxe scaling yields a remarkable improvement over the older scalings, in particular for large isogeometric polynomial degree and high regularity

    Adaptive selection of primal constraints for isogeometric BDDC deluxe preconditioners

    Get PDF
    Isogeometric analysis has been introduced as an alternative to finite element methods in order to simplify the integration of computer-aided design (CAD) software and the discretization of variational problems of continuum mechanics. In contrast with the finite element case, the basis functions of isogeometric analysis are often not nodal. As a consequence, there are fat interfaces which can easily lead to an increase in the number of interface variables after a decomposition of the parameter space into subdomains. Building on earlier work on the deluxe version of the BDDC (balancing domain decomposition by constraints) family of domain decomposition algorithms, several adaptive algorithms are developed in this paper for scalar elliptic problems in an effort to decrease the dimension of the global, coarse component of these preconditioners. Numerical experiments provide evidence that this work can be successful, yielding scalable and quasi-optimal adaptive BDDC algorithms for isogeometric discretizations

    β-Catenin–induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor

    Get PDF
    The transcription factor Microphthalmia-associated transcription factor (MITF) is a lineage-determination factor, which modulates melanocyte differentiation and pigmentation. MITF was recently shown to reside downstream of the canonical Wnt pathway during melanocyte differentiation from pluripotent neural crest cells in zebrafish as well as in mammalian melanocyte lineage cells. Although expression of many melanocytic/pigmentation markers is lost in human melanoma, MITF expression remains intact, even in unpigmented tumors, suggesting a role for MITF beyond its role in differentiation. A significant fraction of primary human melanomas exhibit deregulation (via aberrant nuclear accumulation) of β-catenin, leading us to examine its role in melanoma growth and survival. Here, we show that β-catenin is a potent mediator of growth for melanoma cells in a manner dependent on its downstream target MITF. Moreover, suppression of melanoma clonogenic growth by disruption of β-catenin–T-cell transcription factor/LEF is rescued by constitutive MITF. This rescue occurs largely through a prosurvival mechanism. Thus, β-catenin regulation of MITF expression represents a tissue-restricted pathway that significantly influences the growth and survival behavior of this notoriously treatment-resistant neoplasm

    Using reporters of different misfolded proteins reveals differential strategies in processing protein aggregates

    Get PDF
    The accumulation of misfolded proteins is a hallmark of aging and many neurodegenerative diseases, making it important to understand how the cellular machinery recognizes and processes such proteins. A key question in this respect is whether misfolded proteins are handled in a similar way regard less of their genetic origin. To approach this question, we compared how three different misfolded proteins, guk1-7,gus1-3, and pro3-1, are handled by the cell. We show that all three are nontoxic, even though highly overexpressed, high-lighting their usefulness in analyzing the cellular response to misfolding in the absence of severe stress. We found significant differences between the aggregation and disaggregation behavior of the misfolded proteins. Specifically, gus1-3 formed some aggregates that did not efficiently recruit the proteindisaggregase Hsp104 and did not colocalize with the other misfolded reporter proteins. Strikingly, while all three misfolded proteins generally coaggregated and colocalized to specific sites in the cell, disaggregation was notably different; the rate of aggregate clearance of pro3-1 was faster than that of the other misfolded proteins, and its clearance rate was nothindered when pro3-1 colocalized with a slowly resolved mis-folded protein. Finally, we observed using super-resolutionlight microscopy as well as immunogold labeling EM in which both showed an even distribution of the different mis-folded proteins within an inclusion, suggesting that misfolding characteristics and remodeling, rather than spatial compart-mentalization, allows for differential clearance of these mis-folding reporters residing in the same inclusion. Taken together, our results highlight how properties of misfolded proteins can significantly affect processing

    Using reporters of different misfolded proteins reveals differential strategies in processing protein aggregates

    Get PDF
    The accumulation of misfolded proteins is a hallmark of aging and many neurodegenerative diseases, making it important to understand how the cellular machinery recognizes and processes such proteins. A key question in this respect is whether misfolded proteins are handled in a similar way regardless of their genetic origin. To approach this question, we compared how three different misfolded proteins, guk1-7, gus1-3, and pro3-1, are handled by the cell. We show that all three are nontoxic, even though highly overexpressed, highlighting their usefulness in analyzing the cellular response to misfolding in the absence of severe stress. We found significant differences between the aggregation and disaggregation behavior of the misfolded proteins. Specifically, gus1-3 formed some aggregates that did not efficiently recruit the protein disaggregase Hsp104 and did not colocalize with the other misfolded reporter proteins. Strikingly, while all three misfolded proteins generally coaggregated and colocalized to specific sites in the cell, disaggregation was notably different; the rate of aggregate clearance of pro3-1 was faster than that of the other misfolded proteins, and its clearance rate was not hindered when pro3-1 colocalized with a slowly resolved misfolded protein. Finally, we observed using super-resolution light microscopy as well as immunogold labeling EM in which both showed an even distribution of the different misfolded proteins within an inclusion, suggesting that misfolding characteristics and remodeling, rather than spatial compartmentalization, allows for differential clearance of these misfolding reporters residing in the same inclusion. Taken together, our results highlight how properties of misfolded proteins can significantly affect processing

    Human B Cell Differentiation Is Characterized by Progressive Remodeling of O-Linked Glycans

    Get PDF
    Germinal centers (GC) are microanatomical niches where B cells proliferate, undergo antibody affinity maturation, and differentiate to long-lived memory B cells and antibody-secreting plasma cells. For decades, GC B cells have been defined by their reactivity to the plant lectin peanut agglutinin (PNA), which binds serine/threonine (O-linked) glycans containing the asialylated disaccharide Gal-β1,3-GalNAc-Ser/Thr (also called T-antigen). In T cells, acquisition of PNA binding by activated T cells and thymocytes has been linked with altered tissue homing patterns, cell signaling, and survival. Yet, in GC B cells, the glycobiological basis and significance of PNA binding remains surprisingly unresolved. Here, we investigated the basis for PNA reactivity of GC B cells. We found that GC B cell binding to PNA is associated with downregulation of the α2,3 sialyltransferase, ST3GAL1 (ST3Gal1), and overexpression of ST3Gal1 was sufficient to reverse PNA binding in B cell lines. Moreover, we found that the primary scaffold for PNA-reactive O-glycans in B cells is the B cell receptor-associated receptor-type tyrosine phosphatase CD45, suggesting a role for altered O-glycosylation in antigen receptor signaling. Consistent with similar reports in T cells, ST3Gal1 overexpression in B cells in vitro induced drastic shortening in O-glycans, which we confirmed by both antibody staining and mass spectrometric O-glycomic analysis. Unexpectedly, ST3Gal1-induced changes in O-glycan length also correlated with altered binding of two glycosylation-sensitive CD45 antibodies, RA3-6B2 (more commonly called B220) and MEM55, which (in humans) have previously been reported to favor binding to naïve/GC subsets and memory/plasmablast subsets, respectively. Analysis of primary B cell binding to B220, MEM55, and several plant lectins suggested that B cell differentiation is accompanied by significant loss of O-glycan complexity, including loss of extended Core 2 O-glycans. To our surprise, decreased O-glycan length from naïve to post-GC fates best correlated not with ST3Gal1, but rather downregulation of the Core 2 branching enzyme GCNT1. Thus, our data suggest that O-glycan remodeling is a feature of B cell differentiation, dually regulated by ST3Gal1 and GCNT1, that ultimately results in expression of distinct O-glycosylation states/CD45 glycoforms at each stage of B cell differentiation

    MiTF links Erk1/2 kinase and p21CIP1/WAF1 activation after UVC radiation in normal human melanocytes and melanoma cells

    Get PDF
    As a survival factor for melanocytes lineage cells, MiTF plays multiple roles in development and melanomagenesis. What role MiTF plays in the DNA damage response is currently unknown. In this report we observed that MiTF was phosphorylated at serine 73 after UVC radiation, which was followed by proteasome-mediated degradation. Unlike after c-Kit stimulation, inhibiting p90RSK-1 did not abolish the band shift of MiTF protein, nor did it abolish the UVC-mediated MiTF degradation, suggesting that phosphorylation on serine 73 by Erk1/2 is a key event after UVC. Furthermore, the MiTF-S73A mutant (Serine 73 changed to Alanine via site-directed mutagenesis) was unable to degrade and was continuously expressed after UVC exposure. Compared to A375 melanoma cells expressing wild-type MiTF (MiTF-WT), cells expressing MiTF-S73A mutant showed less p21WAF1/CIP1 accumulation and a delayed p21WAF1/CIP1 recovery after UVC. Consequently, cells expressing MiTF-WT showed a temporary G1 arrest after UVC, but cells expressing MiTF-S73A mutant or lack of MiTF expression did not. Finally, cell lines with high levels of MiTF expression showed higher resistance to UVC-induced cell death than those with low-level MiTF. These data suggest that MiTF mediates a survival signal linking Erk1/2 activation and p21WAF1/CIP1 regulation via phosphorylation on serine 73, which facilitates cell cycle arrest. In addition, our data also showed that exposure to different wavelengths of UV light elicited different signal pathways involving MiTF

    Homopolymer tract length dependent enrichments in functional regions of 27 eukaryotes and their novel dependence on the organism DNA (G+C)% composition

    Get PDF
    BACKGROUND: DNA homopolymer tracts, poly(dA).poly(dT) and poly(dG).poly(dC), are the simplest of simple sequence repeats. Homopolymer tracts have been systematically examined in the coding, intron and flanking regions of a limited number of eukaryotes. As the number of DNA sequences publicly available increases, the representation (over and under) of homopolymer tracts of different lengths in these regions of different genomes can be compared. RESULTS: We carried out a survey of the extent of homopolymer tract over-representation (enrichment) and over-proportional length distribution (above expected length) primarily in the single gene documents, but including some whole chromosomes of 27 eukaryotics across the (G+C)% composition range from 20 – 60%. A total of 5.2 × 10(7 )bases from 15,560 cleaned (redundancy removed) sequence documents were analyzed. Calculated frequencies of non-overlapping long homopolymer tracts were found over-represented in non-coding sequences of eukaryotes. Long poly(dA).poly(dT) tracts demonstrated an exponential increase with tract length compared to predicted frequencies. A novel negative slope was observed for all eukaryotes between their (G+C)% composition and the threshold length N where poly(dA).poly(dT) tracts exhibited over-representation and a corresponding positive slope was observed for poly(dG).poly(dC) tracts. Tract size thresholds where over-representation of tracts in different eukaryotes began to occur was between 4 – 11 bp depending upon the organism (G+C)% composition. The higher the GC%, the lower the threshold N value was for poly(dA).poly(dT) tracts, meaning that the over-representation happens at relatively lower tract length in more GC-rich surrounding sequence. We also observed a novel relationship between the highest over-representations, as well as lengths of homopolymer tracts in excess of their random occurrence expected maximum lengths. CONCLUSIONS: We discuss how our novel tract over-representation observations can be accounted for by a few models. A likely model for poly(dA).poly(dT) tract over-representation involves the known insertion into genomes of DNA synthesized from retroviral mRNAs containing 3' polyA tails. A proposed model that can account for a number of our observed results, concerns the origin of the isochore nature of eukaryotic genomes via a non-equilibrium GC% dependent mutation rate mechanism. Our data also suggest that tract lengthening via slip strand replication is not governed by a simple thermodynamic loop energy model
    corecore