59 research outputs found
Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions
<p>Abstract</p> <p>Background</p> <p>Two-dimensional, unidirectionally encoded, cardiovascular magnetic resonance (CMR) velocity mapping is an established technique for the quantification of blood flow in large vessels. However, it requires an operator to correctly align the planes of acquisition. If all three directional components of velocity are measured for each voxel of a 3D volume through the phases of the cardiac cycle, blood flow through any chosen plane can potentially be calculated retrospectively. The initial acquisition is then more time consuming but relatively operator independent.</p> <p>Aims</p> <p>To compare the curves and volumes of flow derived from conventional 2D and comprehensive 3D flow acquisitions in a steady state flow model, and in vivo through planes transecting the ascending aorta and pulmonary trunk in 10 healthy volunteers.</p> <p>Methods</p> <p>Using a 1.5 T Phillips Intera CMR system, 3D acquisitions used an anisotropic 3D segmented k-space phase contrast gradient echo sequence with a short EPI readout, with prospective ECG and diaphragm navigator gating. The 2D acquisitions used segmented k-space phase contrast with prospective ECG and diaphragm navigator gating. Quantitative flow analyses were performed retrospectively with dedicated software for both the in vivo and in vitro acquisitions.</p> <p>Results</p> <p>Analysis of in vitro data found the 3D technique to have overestimated the continuous flow rate by approximately 5% across the entire applied flow range. In vivo, the 2D and the 3D techniques yielded similar volumetric flow curves and measurements. Aortic flow: (mean ± SD), 2D = 89.5 ± 13.5 ml & 3D = 92.7 ± 17.5 ml. Pulmonary flow: 2D = 98.8 ± 18.4 ml & 3D = 94.9 ± 19.0 ml). Each in vivo 3D acquisition took about 8 minutes or more.</p> <p>Conclusion</p> <p>Flow measurements derived from the 3D and 2D acquisitions were comparable. Although time consuming, comprehensive 3D velocity acquisition could be relatively operator independent, and could potentially yield information on flow through several retrospectively chosen planes, for example in patients with congenital or valvular heart disease.</p
Altered aortic 3D hemodynamics and geometry in pediatric Marfan syndrome patients
BACKGROUND: Blood flow dynamics make it possible to better understand the development of aortopathy and cardiovascular events in patients with Marfan syndrome (MFS). Aortic 3D blood flow characteristics were investigated in relation to aortic geometry in children and adolescents with MFS. METHODS: Twenty-five MFS patients (age 15.6 ± 4.0 years; 11 females) and 21 healthy controls (age 16.0 ± 2.6 years; 12 females) underwent magnetic resonance angiography and 4D flow CMR for assessment of thoracic aortic size and 3D blood flow velocities. Data analysis included calculation of aortic diameter and BSA-indexed aortic dimensions (Z-score) along the thoracic aorta, 3D mean systolic wall shear stress (WSS(mean)) in ten aortic segments and assessment of aortic blood flow patterns. RESULTS: Aortic root (root), ascending (AAo) and descending (DAo) aortic size was significantly larger in MFS patients than healthy controls (Root Z-score: 3.56 ± 1.45 vs 0.49 ± 0.78, p < 0.001; AAo Z-score 0.21 ± 0.95 vs −0.54 ± 0.64, p = 0.004; proximal DAo Z-score 2.02 ± 1.60 vs 0.56 ± 0.66, p < 0.001). A regional variation in prevalence and severity of flow patterns (vortex and helix flow patterns) was observed, with the aortic root and the proximal DAo (pDAo) being more frequently affected in MFS. MFS patients had significantly reduced WSS(mean) in the proximal AAo (pAAo) outer segment (0.65 ± 0.12 vs. 0.73 ± 0.14 Pa, p = 0.029) and pDAo inner segment (0.74 ± 0.17 vs. 0.87 ± 0.21 Pa, p = 0.021), as well as higher WSS(mean) in the inner segment of the distal AAo (0.94 ± 0.14 vs. 0.84 ± 0.15 Pa, p = 0.036) compared to healthy subjects. An inverse relationship existed between pDAo WSS(mean) and both pDAo diameter (R = −0.53, p < 0.001) and % diameter change along the pDAo segment (R = −0.64, p < 0.001). CONCLUSIONS: MFS children and young adults have altered aortic flow patterns and differences in aortic WSS that were most pronounced in the pAAo and pDAo, segments where aortic dissection or rupture often originate. The presence of vortex flow patterns and abnormal WSS correlated with regional size of the pDAo and are potentially valuable additional markers of disease severity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12968-017-0345-7) contains supplementary material, which is available to authorized users
Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance
<p>Abstract</p> <p>Background</p> <p>Phase contrast cardiovascular magnetic resonance (CMR) is able to measure all three directional components of the velocities of blood flow relative to the three spatial dimensions and the time course of the heart cycle. In this article, methods used for the acquisition, visualization, and quantification of such datasets are reviewed and illustrated.</p> <p>Methods</p> <p>Currently, the acquisition of 3D cine (4D) phase contrast velocity data, synchronized relative to both cardiac and respiratory movements takes about ten minutes or more, even when using parallel imaging and optimized pulse sequence design. The large resulting datasets need appropriate post processing for the visualization of multidirectional flow, for example as vector fields, pathlines or streamlines, or for retrospective volumetric quantification.</p> <p>Applications</p> <p>Multidirectional velocity acquisitions have provided 3D visualization of large scale flow features of the healthy heart and great vessels, and have shown altered patterns of flow in abnormal chambers and vessels. Clinically relevant examples include retrograde streams in atheromatous descending aortas as potential thrombo-embolic pathways in patients with cryptogenic stroke and marked variations of flow visualized in common aortic pathologies. Compared to standard clinical tools, 4D velocity mapping offers the potential for retrospective quantification of flow and other hemodynamic parameters.</p> <p>Conclusions</p> <p>Multidirectional, 3D cine velocity acquisitions are contributing to the understanding of normal and pathologically altered blood flow features. Although more rapid and user-friendly strategies for acquisition and analysis may be needed before 4D velocity acquisitions come to be adopted in routine clinical CMR, their capacity to measure multidirectional flows throughout a study volume has contributed novel insights into cardiovascular fluid dynamics in health and disease.</p
Novel insight into the detailed myocardial motion and deformation of the rodent heart using high-resolution phase contrast cardiovascular magnetic resonance
Tensor field visualisation using adaptive filtering of noise fields combined with glyph rendering
Time resolved three-dimensional automated segmentation of the left ventricle
This paper describes a robust approach for multimodality segmentation of the cardiac left ventricle. The method is based on the concept of deformable models, but extended with an enhanced and fast edge detection scheme that includes temporal information, and anatomical a priori information. The algorithm is implemented with a fast numeric scheme for solving energy minimization, and efficient filter nets for fast edge detection. This allows clinically applicable time for a whole time resolved 3D cardiac data set to be achieved on a standard desktop computer. The algorithm is validated on images acquired using MRI gradient echo, MRI (SSFP) images, and Cardiac CT The complete algorithm is implemented into a software package freely available for non commercial research at http://segment.heiberg.s
A novel method for determining intracardiac flow patterns and pressure gradients using time-resolved 3D MRI data
- …
