45 research outputs found
Molecular Recognition Force Spectroscopy for Probing Cell Targeted Nanoparticles In Vitro
In the development and design of cell targeted nanoparticle-based systems the density of targeting
moieties plays a fundamental role in allowing maximal cell-specific interaction. Here, we describe the
use of molecular recognition force spectroscopy as a valuable tool for the characterization and
optimization of targeted nanoparticles toward attaining cell-specific interaction. By tailoring the
density of targeting moieties at the nanoparticle surface, one can correlate the unbinding event
probability between nanoparticles tethered to an atomic force microscopy tip and cells to the
nanoparticle vectoring capacity. This novel approach allows for a rapid and cost-effective design of
targeted nanomedicines reducing the need for long and tedious in vitro tests.The authors would like to acknowledge the Bioimaging Platform (i3S-INEB) for the support with
atomic force microscopy. This work was financed by projects NORTE-01-0145-FEDER-000008 and
NORTE-01-0145-FEDER-000012, supported by Norte Portugal Regional Operational Programme
(NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional
Development Fund (ERDF) and FEDER - Fundo Europeu de Desenvolvimento Regional funds through
the COMPETE 2020 - Operacional Programme for Competitiveness and Internationalisation (POCI),
Portugal 2020; and by Portuguese funds through FCT (Fundação para a Ciência e a Tecnologia) in
the framework of the projects UID/BIM/04293/ 2013, PTDC/CTM-NAN/115124/2009, and PTDC/CTMNAN/3547/2014. C.P. Gomes acknowledge FCT for her PhD scholarship SFRH/BD/79930/2011
Biophysical Assessment of Single Cell Cytotoxicity: Diesel Exhaust Particle-Treated Human Aortic Endothelial Cells
Exposure to diesel exhaust particles (DEPs), a major source of traffic-related air pollution, has become a serious health concern due to its adverse influences on human health including cardiovascular and respiratory disorders. To elucidate the relationship between biophysical properties (cell topography, cytoskeleton organizations, and cell mechanics) and functions of endothelial cells exposed to DEPs, atomic force microscope (AFM) was applied to analyze the toxic effects of DEPs on a model cell line from human aortic endothelial cells (HAECs). Fluorescence microscopy and flow cytometry were also applied to further explore DEP-induced cytotoxicity in HAECs. Results revealed that DEPs could negatively impair cell viability and alter membrane nanostructures and cytoskeleton components in a dosage- and a time-dependent manner; and analyses suggested that DEPs-induced hyperpolarization in HAECs appeared in a time-dependent manner, implying DEP treatment would lead to vasodilation, which could be supported by down-regulation of cell biophysical properties (e.g., cell elasticity). These findings are consistent with the conclusion that DEP exposure triggers important biochemical and biophysical changes that would negatively impact the pathological development of cardiovascular diseases. For example, DEP intervention would be one cause of vasodilation, which will expand understanding of biophysical aspects associated with DEP cytotoxicity in HAECs
A thirteen-year analysis of Plasmodium falciparum populations reveals high conservation of the mutant pfcrt haplotype despite the withdrawal of chloroquine from national treatment guidelines in Gabon
<p>Abstract</p> <p>Background</p> <p>Chloroquine resistance (CR) decreased after the removal of chloroquine from national treatment guidelines in Malawi, Kenia and Tanzania. In this investigation the prevalence of the chloroquine resistance (CQR) conferring mutant <it>pfcrt </it>allele and its associated chromosomal haplotype were determined before and after the change in Gabonese national treatment guidelines from chloroquine (CQ) to artesunate plus amodiaquine (AQ) in 2003.</p> <p>Methods</p> <p>The prevalence of the wild type <it>pfcrt </it>allele was assessed in 144 isolates from the years 2005 - 07 by PCR fragment restriction digest and direct sequencing. For haplotype analysis of the chromosomal regions flanking the <it>pfcrt </it>locus, microsatellite analysis was done on a total of 145 isolates obtained in 1995/96 (43 isolates), 2002 (47 isolates) and 2005 - 07 (55 isolates).</p> <p>Results</p> <p>The prevalence of the mutant <it>pfcrt </it>allele decreased from 100% in the years 1995/96 and 2002 to 97% in 2005 - 07. Haplotype analysis showed that in 1995/96 79% of the isolates carried the same microsatellite alleles in a chromosomal fragment spanning 39 kb surrounding the <it>pfcrt </it>locus. In 2002 and 2005 - 07 the prevalence of this haplotype was 62% and 58%, respectively. <it>Pfcrt </it>haplotype analysis showed that all wild type alleles were CVMNK.</p> <p>Conclusion</p> <p>Four years after the withdrawal of CQ from national treatment guidelines the prevalence of the mutant <it>pfcrt </it>allele remains at 97%. The data suggest that the combination of artesunate plus AQ may result in continued selection for the mutant <it>pfcrt </it>haplotype even after discontinuance of CQ usage.</p
Opposed circulating plasma levels of endothelin-1 and C-type natriuretic peptide in children with Plasmodium falciparum malaria
Enhanced Pro-Inflammatory Cytokine Responses following Toll-Like-Receptor Ligation in Schistosoma haematobium-Infected Schoolchildren from Rural Gabon
BACKGROUND: Schistosoma infection is thought to lead to down-regulation of the host's immune response. This has been shown for adaptive immune responses, but the effect on innate immunity, that initiates and shapes the adaptive response, has not been extensively studied. In a first study to characterize these responses, we investigated the effect of Schistosoma haematobium infection on cytokine responses of Gabonese schoolchildren to a number of Toll-like receptor (TLR) ligands. METHODOLOGY: Peripheral blood mononuclear cells (PBMCs) were collected from S. haematobium-infected and uninfected schoolchildren from the rural area of Zile in Gabon. PBMCs were incubated for 24 h and 72 h with various TLR ligands, as well as schistosomal egg antigen (SEA) and adult worm antigen (AWA). Pro-inflammatory TNF-alpha and anti-inflammatory/regulatory IL-10 cytokine concentrations were determined in culture supernatants. PRINCIPAL FINDINGS: Infected children produced higher adaptive IL-10 responses than uninfected children against schistosomal antigens (72 h incubation). On the other hand, infected children had higher TNF-alpha responses than uninfected children and significantly higher TNF-alpha to IL-10 ratios in response to FSL-1 and Pam3, ligands of TLR2/6 and TLR2/1 respectively. A similar trend was observed for the TLR4 ligand LPS while Poly(I:C) (Mda5/TLR3 ligand) did not induce substantial cytokine responses (24 h incubation). CONCLUSIONS: This pilot study shows that Schistosoma-infected children develop a more pro-inflammatory TLR2-mediated response in the face of a more anti-inflammatory adaptive immune response. This suggests that S. haematobium infection does not suppress the host's innate immune system in the context of single TLR ligation
Characterization of the specific interaction between the DNA aptamer sgc8c and protein tyrosine kinase-7 receptors at the surface of T-cells by biosensing AFM
Ligands on the string: single-molecule AFM studies on the interaction of antibodies and substrates with the Na<sup>+</sup>-glucose co-transporter SGLT1 in living cells
Distribution of Sialic Acids on Mucins and Gels: A Defense Mechanism
AbstractMoist mucosal epithelial interfaces that are exposed to external environments are dominated by sugar epitopes, some of which (e.g., sialic acids) are involved in host defense. In this study, we determined the abundance and distribution of two sialic acids to assess differences in their availability to an exogenous probe in isolated mucins and mucous gels. We used atomic force microscopy to obtain force maps of human preocular mucous and purified ocular mucins by probing and locating the interactions between tip-tethered lectins Maackia amurensis and Sambucus nigra and their respective receptors, α-2,3 and α-2,6 N-acetylneuraminic (sialic) acids. The rupture force distributions were not affected by neighboring sugar-bearing molecules. Energy contours for both lectin-sugar bonds were fitted to a two-barrier model, suggesting a conformational change before dissociation. In contrast to data from purified mucin molecules, the preocular gels presented numerous large clusters (19,000 ± 4000 nm2) of α-2,6 sialic acids, but very few small clusters (2000 ± 500 nm2) of α-2,3 epitopes. This indicates that mucins, which are rich in α-2,3 sialic acids, are only partially exposed at the surface of the mucous gel. Microorganisms that recognize α-2,3 sialic acids will encounter only isolated ligands, and the adhesion of other microorganisms will be enhanced by large islands of neighboring α-2,6 sialic acids. We have unveiled an additional level of mucosal surface heterogeneity, specifically in the distribution of pro- and antiadhesive sialic acids that protect underlying epithelia from viruses and bacteria
Multiple receptors involved in human rhinovirus attachment to live cells
Minor group human rhinoviruses (HRVs) attach to members of the low-density lipoprotein receptor family and are internalized via receptor-mediated endocytosis. The attachment of HRV2 to the cell surface, the first step in infection, was characterized at the single-molecule level by atomic force spectroscopy. Sequential binding of multiple receptors was evident from recordings of characteristic quantized force spectra, which suggests that multiple receptors bound to the virus in a timely manner. Unbinding forces required to detach the virus from the cell membrane increased within a time frame of several hundred milliseconds. The number of receptors involved in virus binding was determined, and estimates for on-rate, off-rate, and equilibrium binding constant of the interaction between HRV2 and plasma membrane-anchored receptors were obtained
