11,036 research outputs found
Foerster resonance energy transfer rate and local density of optical states are uncorrelated in any dielectric nanophotonic medium
Motivated by the ongoing debate about nanophotonic control of Foerster
resonance energy transfer (FRET), notably by the local density of optical
states (LDOS), we study an analytic model system wherein a pair of ideal dipole
emitters - donor and acceptor - exhibit energy transfer in the vicinity of an
ideal mirror. The FRET rate is controlled by the mirror up to distances
comparable to the donor-acceptor distance, that is, the few-nanometer range.
For vanishing distance, we find a complete inhibition or a four-fold
enhancement, depending on dipole orientation. For mirror distances on the
wavelength scale, where the well-known `Drexhage' modification of the
spontaneous-emission rate occurs, the FRET rate is constant. Hence there is no
correlation between the Foerster (or total) energy transfer rate and the LDOS.
At any distance to the mirror, the total energy transfer between a
closely-spaced donor and acceptor is dominated by Foerster transfer, i.e., by
the static dipole-dipole interaction that yields the characteristic
inverse-sixth-power donor-acceptor distance dependence in homogeneous media.
Generalizing to arbitrary inhomogeneous media with weak dispersion and weak
absorption in the frequency overlap range of donor and acceptor, we derive two
main theoretical results. Firstly, the spatially dependent Foerster energy
transfer rate does not depend on frequency, hence not on the LDOS. Secondly the
FRET rate is expressed as a frequency integral of the imaginary part of the
Green function. This leads to an approximate FRET rate in terms of the LDOS
integrated over a huge bandwidth from zero frequency to about 10 times the
donor emission frequency, corresponding to the vacuum-ultraviolet. Even then,
the broadband LDOS hardly contributes to the energy transfer rates. We discuss
practical consequences including quantum information processing.Comment: 17 pages, 9 figure
Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect
We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities that operate
in the "Original" (O) telecom band by exploiting the instantaneous electronic
Kerr effect. We observe that the resonance frequency reversibly shifts within
one picosecond. We investigate experimentally and theoretically the role of
several main parameters: the material backbone and its electronic bandgap, the
pump power, the quality factor, and the duration of the switch pulse. The
magnitude of the shift is reduced when the backbone of the central
layer has a greater electronic bandgap; pumping with photon energies
near the bandgap resonantly enhances the switched magnitude. Our model shows
that the magnitude of the resonance frequency shift depends on the pump pulse
duration and is maximized when the duration matches the cavity storage time
that is set by the quality factor. We provide the settings for the essential
parameters so that the frequency shift of the cavity resonance can be increased
to one linewidth
Optimal control of light propagation through multiple-scattering media in the presence of noise
We study the control of coherent light propagation through
multiple-scattering media in the presence of measurement noise. In our
experiments, we use a two-step optimization procedure to find the optimal
incident wavefront. We conclude that the degree of optimal control of coherent
light propagation through a multiple-scattering medium is only determined by
the number of photoelectrons detected per single speckle spot. The prediction
of our model agrees well with the experimental results. Our results offer
opportunities for imaging applications through scattering media such as
biological tissue in the shot noise limit
Equine digital tendons show breed‐specific differences in their mechanical properties that may relate to athletic ability and predisposition to injury
Background Throughout the ages, human subjects have selected horse breeds for their locomotor capacities. Concurrently, tissue properties may have diversified because of specific requirements of different disciplines. Objectives The aim of this study was to compare the biomechanical properties of tendons with different functions between equine breeds traditionally selected for racing or sport. Study design This study used ex vivo tendons and compared the mechanical properties of the common digital extensor tendon (CDET) and superficial digital flexor tendon (SDFT) between racehorses (Thoroughbred [TB]) and sports horses (Friesian Horse [FH], Warmblood [WB]). Methods The SDFT and CDET of FH (n = 12), WBs (n = 12) and TBs (n = 8) aged 3-12 years were harvested. The cross sectional area (cm(2)), maximal load (N), ultimate strain (%), ultimate stress (MPa) and elastic modulus (MPa) were determined and tested for significant differences between the breeds (P<0.05). Results The SDFT from WB horses had a significantly lower elastic modulus than TB horses and failed at a higher strain and load than both FHs and TBs. The mechanical properties of the CDET did not differ between breeds. In agreement with previous studies, the CDET failed at a higher stress and had a higher elastic modulus than the SDFT and, for the WB group of horses only, failed at a significantly lower strain. Interestingly, the mode of failure differed between breeds, particularly with respect to the FHs. Main limitations The exercise history of horses used in this study was unknown and the age-range was relatively large; both these factors may have influenced the absolute properties reported in this study. Conclusions This study shows for the first time that mechanical properties of the SDFT differ between breeds. These properties are likely to be related to selection for high-speed vs. an extravagant elastic gait and may be an important indicator of performance ability. The is available in Spanish - see Supporting Informatio
Observation of Intensity Statistics of Light Transmitted Through 3D Random Media
We experimentally observe the spatial intensity statistics of light
transmitted through three-dimensional isotropic scattering media. The intensity
distributions measured through layers consisting of zinc oxide nanoparticles
differ significantly from the usual Rayleigh statistics associated with
speckle, and instead are in agreement with the predictions of mesoscopic
transport theory, taking into account the known material parameters of the
samples. Consistent with the measured spatial intensity fluctuations, the total
transmission fluctuates. The magnitude of the fluctuations in the total
transmission is smaller than expected on the basis of quasi-one-dimensional
(1D) transport theory, which indicates that quasi-1D theories cannot fully
describe these open three-dimensional media.Comment: 4 pages 3 figure
- …
