636 research outputs found
On the excitation of PG1159-type pulsations
Stability properties are presented of dipole and quadrupole nonradial
oscillation modes of model stars that experienced a late helium shell flash on
their way to the white-dwarf cooling domain. The computed instability domains
are compared with the observed hot variable central stars of planetary nebulae
and the GW Vir pulsators.Comment: Accepted for publication in Astronomy & Astrophysic
Recommended from our members
A Status Report On A Planet Search Around White Dwarf Stars
We have continued monitoring a pilot sample of 15 isolated, pulsating DA white dwarfs for center-of-mass motion caused by a planetary companion. Roughly 7 years into our survey, we have preliminary evidence for periodic variations in pulse arrival times for at least two white dwarfs in our sample. The variations in these systems are unlikely to be caused by secular evolution and are possibly the result of motion of the white dwarf around a center of mass. We have yet to claim confirmation of a planet. GD66 is a previously published candidate system, with a modulation in pulse arrival times that could be caused by a 2.0 M-J sin i planetary companion with an 8.3 year orbital period. Another candidate system, WD1354+0108, has a phase modulation consistent with a 0.7 M-J sin i planet at 2.3 AU (a 4.5 year orbit). We see similar behavior in two independent frequencies within this star, and while a sinusoid is currently a marginally better fit to the data than a straight line (as we might expect from cooling alone in a DAV), we are hesitant to over-interpret our results. Finally, we have a third system, WD0018+0031, that shows a change in pulse arrival times inconsistent with cooling alone; a 2.7 M-J planet at an orbit of about 5 AU could cause the observed trend. Observations of these candidate systems are ongoing in order to constrain any planetary companions that may be present.Astronom
The design and construction of a towed multi-port water sampling probe for 100 meter depths
The experimental towed multi-port water sampler was designed to
provide a shipboard science party with the capability of obtaining continuous
water samples from the surface to a 100 meter depth. The device
will simultaneously provide six samples spaced one meter apart in a
vertical plane, while being towed by a surface support vessel at a forward
speed of between two to three knots.
The device consists of a bottom fish containing six electric
motors, each driving an individual pump. The six water samples are pumped
to the surface using separate runs of TFE Teflon tubing. The tube is
mounted in a pliant fairing that also houses the lifting cable, power
leads, and instrumentation bundle. A drum winch is used to store a total
of 150 meters of faired cable, and is capable of raising or lowering the
fish while under way.
The sampler will provide a discharge flow rate of 5.6 liters per
minute from each sample tube, while pumping through 150 meters of 12.7 rnrn
bore tubing, against a 4.5 meter head. A depth sensor transducer within
the fish provides a top-side readout of the actual operating depth of the
fish, while a remote reading temperature sensor provides a continuous
display of the water temperature.Prepared for the U.S. Department of Commerce,
National Oceanic and Atmospheric Administration
under Contract NA79AA-D-0044
Fundamental results from microgravity cell experiments with possible commericial applications
Some of the major milestones are presented for studies in cell biology that were conducted by the Soviet Union and the United States in the upper layers of the atmosphere and in outer space for more than thirty-five years. The goals have changed as new knowledge is acquired and the priorities for the use of microgravity have shifted toward basic research and commercial applications. Certain details concerning the impact of microgravity on cell systems is presented. However, it needs to be emphasized that in planning and conducting microgravity experiments, there are some important prerequisites not normally taken into account. Apart from the required background knowledge of previous microgravity and ground-based experiments, the investigator should have the understanding of the hardware as a physical unit, the complete knowledge of its operation, the range of its capabilities and the anticipation of problems that may occur. Moreover, if the production of commercial products in space is to be manifested, data obtained from previous microgravity experiments must be used to optimize the design of flight hardware
Axions and the pulsation periods of variable white dwarfs revisited
Axions are the natural consequence of the introduction of the Peccei-Quinn
symmetry to solve the strong CP problem. All the efforts to detect such elusive
particles have failed up to now. Nevertheless, it has been recently shown that
the luminosity function of white dwarfs is best fitted if axions with a mass of
a few meV are included in the evolutionary calculations. Our aim is to show
that variable white dwarfs can provide additional and independent evidence
about the existence of axions. The evolution of a white dwarf is a slow cooling
process that translates into a secular increase of the pulsation periods of
some variable white dwarfs, the so-called DAV and DBV types. Since axions can
freely escape from such stars, their existence would increase the cooling rate
and, consequently, the rate of change of the periods as compared with the
standard ones. The present values of the rate of change of the pulsation period
of G117-B15A are compatible with the existence of axions with the masses
suggested by the luminosity function of white dwarfs, in contrast with previous
estimations. Furthermore, it is shown that if such axions indeed exist, the
drift of the periods of pulsation of DBV stars would be noticeably perturbed.Comment: Accepted for publication in Astronomy & Astrophysic
Asteroseismology of the Kepler V777 Her variable white dwarf with fully evolutionary models
DBV stars are pulsating white dwarfs with atmospheres rich in He.
Asteroseismology of DBV stars can provide valuable clues about the origin,
structure and evolution of hydrogen-deficient white dwarfs, and may allow to
study neutrino and axion physics. Recently, a new DBV star, KIC 8626021, has
been discovered in the field of the \emph{Kepler} spacecraft. It is expected
that further monitoring of this star in the next years will enable astronomers
to determine its detailed asteroseismic profile. We perform an
asteroseismological analysis of KIC 8626021 on the basis of fully evolutionary
DB white-dwarf models. We employ a complete set of evolutionary DB white-dwarf
structures covering a wide range of effective temperatures and stellar masses.
They have been obtained on the basis of a complete treatment of the
evolutionary history of progenitors stars. We compute g-mode adiabatic
pulsation periods for this set of models and compare them with the pulsation
properties exhibited by KIC 8626021. On the basis of the mean period spacing of
the star, we found that the stellar mass should be substantially larger than
spectroscopy indicates. From period-to-period fits we found an
asteroseismological model characterized by an effective temperature much higher
than the spectroscopic estimate. In agreement with a recent asteroseismological
analysis of this star by other authors, we conclude that KIC 8626021 is located
near the blue edge of the DBV instability strip, contrarily to spectroscopic
predictions. We also conclude that the mass of KIC 8626021 should be
substantially larger than thought.Comment: 7 pages, 5 figures, 3 tables. To be published in Astronomy and
Astrophysic
An asteroseismic test of diffusion theory in white dwarfs
The helium-atmosphere (DB) white dwarfs are commonly thought to be the
descendants of the hotter PG1159 stars, which initially have uniform He/C/O
atmospheres. In this evolutionary scenario, diffusion builds a pure He surface
layer which gradually thickens as the star cools. In the temperature range of
the pulsating DB white dwarfs (T_eff ~ 25,000 K) this transformation is still
taking place, allowing asteroseismic tests of the theory. We have obtained
dual-site observations of the pulsating DB star CBS114, to complement existing
observations of the slightly cooler star GD358. We recover the 7 independent
pulsation modes that were previously known, and we discover 4 new ones to
provide additional constraints on the models. We perform objective global
fitting of our updated double-layered envelope models to both sets of
observations, leading to determinations of the envelope masses and pure He
surface layers that qualitatively agree with the expectations of diffusion
theory. These results provide new asteroseismic evidence supporting one of the
central assumptions of spectral evolution theory, linking the DB white dwarfs
to PG1159 stars.Comment: 7 pages, 3 figures, 3 tables, accepted for publication in A&
Evidence For Temperature Change And Oblique Pulsation From Light Curve Fits Of The Pulsating White Dwarf GD 358
Convective driving, the mechanism originally proposed by Brickhill for pulsating white dwarf stars, has gained general acceptance as the generic linear instability mechanism in DAV and dbV white dwarfs. This physical mechanism naturally leads to a nonlinear formulation, reproducing the observed light curves of many pulsating white dwarfs. This numerical model can also provide information on the average depth of a star's convection zone and the inclination angle of its pulsation axis. In this paper, we give two sets of results of nonlinear light curve fits to data on the dbV GD 358. Our first fit is based on data gathered in 2006 by the Whole Earth Telescope; this data set was multiperiodic containing at least 12 individual modes. Our second fit utilizes data obtained in 1996, when GD 358 underwent a dramatic change in excited frequencies accompanied by a rapid increase in fractional amplitude; during this event it was essentially monoperiodic. We argue that GD 358's convection zone was much thinner in 1996 than in 2006, and we interpret this as a result of a short-lived increase in its surface temperature. In addition, we find strong evidence of oblique pulsation using two sets of evenly split triplets in the 2006 data. This marks the first time that oblique pulsation has been identified in a variable white dwarf star.Delaware Asteroseismic Research CenterNational Science Foundation AST-0909107, AST-0607840Norman Hackerman Advanced Research Program 003658-0255-2007Crystal Trust FoundationMt. Cuba ObservatoryUniversity of DelawareAstronom
E´ chelle diagrams and period spacings of g modes in: Doradus stars from four years of Kepler observations
We use photometry from the Kepler Mission to study oscillations in Doradus stars. Some stars show remarkably clear sequences of g modes and we use period ´echelle diagrams to measure period spacings and identifyrotationally split multiplets with ` = 1 and ` = 2.We find small deviations from regular period spacings that arise from the gradient in the chemical composition just outside the convective core. We also find stars for which the period spacing shows a strong linear trend as a function of period, consistent with relatively rapid rotation. Overall, th
The pulsating DA white dwarf star EC 14012-1446: results from four epochs of time-resolved photometry
The pulsating DA white dwarfs are the coolest degenerate stars that undergo
self-driven oscillations. Understanding their interior structure will help to
understand the previous evolution of the star. To this end, we report the
analysis of more than 200 h of time-resolved CCD photometry of the pulsating DA
white dwarf star EC 14012-1446 acquired during four observing epochs in three
different years, including a coordinated three-site campaign. A total of 19
independent frequencies in the star's light variations together with 148
combination signals up to fifth order could be detected. We are unable to
obtain the period spacing of the normal modes and therefore a mass estimate of
the star, but we infer a fairly short rotation period of 0.61 +/- 0.03 d,
assuming the rotationally split modes are l=1. The pulsation modes of the star
undergo amplitude and frequency variations, in the sense that modes with higher
radial overtone show more pronounced variability and that amplitude changes are
always accompanied by frequency variations. Most of the second-order
combination frequencies detected have amplitudes that are a function of their
parent mode amplitudes, but we found a few cases of possible resonantly excited
modes. We point out the complications in the analysis and interpretation of
data sets of pulsating white dwarfs that are affected by combination
frequencies of the form f_A+f_B-f_C intruding into the frequency range of the
independent modes.Comment: 14 pages, 6 figures, 6 tables. MNRAS, in pres
- …
