34,075 research outputs found
Universal scaling of the pion, kaon and proton spectra in Pb-Pb collisions at 2.76 TeV
With the experimental data collected by the ALICE collaboration in Pb-Pb
collisions at a center-of-mass energy per nucleon pair 2.76 TeV for six
different centralities (0-5, 5-10, 10-20, 20-40, 40-60 and
60-80), we investigate the scaling property of the pion, kaon and proton
transverse momentum () spectra at these centralities. We show that
in the low region with 2.75 (3.10 and 2.35) GeV/c
the pion (kaon and proton) spectra exhibit a scaling behaviour independent of
the centrality of the collisions. This scaling behaviour arises when these
spectra are presented in terms of a suitable variable, . The
scaling parameter is determined by the quality factor method and is
parameterized by , where is the average value of the number of participating
nucleons, and are free parameters, characterizes the rate at which
changes with . The
values of for pions and kaons are consistent within uncertainties, while
they are smaller than that for protons. In the high region, due to
the suppression of the spectra, a violation of the proposed scaling is observed
going from central to peripheral collisions. The more peripheral the collisions
are, the more clearly violated the proposed scaling becomes. In the framework
of the colour string percolation model, we argue that the pions, kaons and
protons originate from the fragmentation of clusters which are formed by
strings overlapping and the cluster's fragmentation functions are different for
different hadrons. The scaling behaviour of the pion, kaon and proton spectra
in the low region can be simultaneously explained by the colour
string percolation model in a qualitative way.Comment: 15 pages, 6 figures, accepted by Nucl. Phys.
Rotating system for four-dimensional transverse rms-emittance measurements
Knowledge of the transverse four-dimensional beam rms-parameters is essential
for applications that involve lattice elements that couple the two transverse
degrees of freedom (planes). Of special interest is the removal of inter-plane
correlations to reduce the projected emittances. A dedicated ROtating System
for Emittance measurements (ROSE) has been proposed, developed, and
successfully commissioned to fully determine the four-dimensional beam matrix.
This device has been used at the High Charge injector (HLI) at GSI using a beam
line which is composed of a skew quadrupole triplet, a normal quadrupole
doublet, and ROSE. Mathematical algorithms, measurements, and results for ion
beams of 83Kr13+ at 1.4 MeV/u are reported in this paper.Comment: 11 pages, 10 figure
Fractional Quantum Hall Effect in Suspended Graphene: Transport Coefficients and Electron Interaction Strength
Strongly correlated electron liquids which occur in quantizing magnetic
fields reveal a cornucopia of fascinating quantum phenomena such as
fractionally charged quasiparticles, anyonic statistics, topological order, and
many others. Probing these effects in GaAs-based systems, where electron
interactions are relatively weak, requires sub-kelvin temperatures and
record-high electron mobilities, rendering some of the most interesting states
too fragile and difficult to access. This prompted a quest for new
high-mobility systems with stronger electron interactions. Recently,
fractional-quantized Hall effect was observed in suspended graphene (SG), a
free-standing monolayer of carbon, where it was found to persist up to T=10 K.
The best results in those experiments were obtained on micron-size flakes, on
which only two-terminal transport measurements could be performed. Here we pose
and solve the problem of extracting transport coefficients of a fractional
quantum Hall state from the two-terminal conductance. We develop a method,
based on the conformal invariance of two-dimensional magnetotransport, and
illustrate its use by analyzing the measurements on SG. From the temperature
dependence of longitudinal conductivity, extracted from the measured
two-terminal conductance, we estimate the energy gap of quasiparticle
excitations in the fractional-quantized nu=1/3 state. The gap is found to be
significantly larger than in GaAs-based structures, signaling much stronger
electron interactions in suspended graphene. Our approach provides a new tool
for the studies of quantum transport in suspended graphene and other nanoscale
systems
Testing mechanisms of compensatory fitness of dioecy in a cosexual world
Questions: All else being equal, populations of dioecious species with a 50:50 sex ratio have only half the effective reproductive population size of bisexual species of equal abundance. Consequently, there is a need to explain how dioecious and bisexual species coexist. Increased mean individual seed mass, fecundity, and population density have all been proposed as attributes of unisexual individuals or populations that may contribute to the persistence or resilience of dioecious species. To date, no studies have compared sympatric dioecious and cosexual species with respect to all three components of fitness. In this study, we sought evidence for these compensatory advantages (higher seed mass, greater seed production per unit basal area, and higher population density) in dioecious species. Location: Five 20–25 ha forest dynamic plots spanning a latitudinal gradient in China, including two temperate, two subtropical, and one tropical forest. Methods: We used a phylogenetically corrected generalized linear modelling approach to assess the phylogenetic dependence and joint evolution of sexual system, seed mass and production, and ecological abundances among 48–333 species and 32,568–136,237 individuals per forest. Results: Across all five forests, we detected no consistent advantage for dioecious relative to sympatric cosexual species with respect to mean individual seed mass, seed production or the density of stems in any size class. Conclusions: Our study suggests that seed traits may provide compensatory mechanisms in some forests, but most often the coexistence of sexual systems cannot be explained by advantages of dioecy related to seed quality and demographic parameters. Future investigations of the factors that promote coexistence may increase our understanding by expanding the search to include attributes such as lifespan and tolerance or resistance to herbivores
Possible Exotic State
We study the possible exotic states with using the
tetraquark interpolating currents with the QCD sum rule approach. The extracted
masses are around 4.85 GeV for the charmonium-like states and 11.25 GeV for the
bottomomium-like states. There is no working region for the light tetraquark
currents, which implies the light state may not exist below 2 GeV.Comment: 13 pages, 11 figures, 2 table
- …
