592,761 research outputs found

    Information Flow, Non-Markovianity and Geometric Phases

    Full text link
    Geometric phases and information flows of a two-level system coupled to its environment are calculated and analyzed. The information flow is defined as a cumulant of changes in trace distance between two quantum states, which is similar to the measure for non-Markovianity given by Breuer. We obtain an analytic relation between the geometric phase and the information flow for pure initial states, and a numerical result for mixed initial states. The geometric phase behaves differently depending on whether there are information flows back to the two-level system from its environment.Comment: 12 pages, 11 figure

    Multilevel quantum Otto heat engines with identical particles

    Full text link
    A quantum Otto heat engine is studied with multilevel identical particles trapped in one-dimensional box potential as working substance. The symmetrical wave function for Bosons and the anti-symmetrical wave function for Fermions are considered. In two-particle case, we focus on the ratios of WiW^i (i=B,Fi=B,F) to WsW_s, where WBW^B and WFW^F are the work done by two Bosons and Fermions respectively, and WsW_s is the work output of a single particle under the same conditions. Due to the symmetric of the wave functions, the ratios are not equal to 22. Three different regimes, low temperature regime, high temperature regime, and intermediate temperature regime, are analyzed, and the effects of energy level number and the differences between the two baths are calculated. In the multiparticle case, we calculate the ratios of WMi/MW^i_M/M to WsW_s, where WMi/MW^i_M/M can be seen as the average work done by a single particle in multiparticle heat engine. For other working substances whose energy spectrum have the form of Enn2E_n\sim n^2, the results are similar. For the case EnnE_n\sim n, two different conclusions are obtained

    Current-induced magnetoresistance oscillations in two-dimensional electron systems

    Full text link
    Electric current-induced magnetoresistance oscillations recently discovered in two-dimensional electron systems are analyzed using a microscopic scheme for nonlinear magnetotransport direct controlled by the current. The magnetoresistance oscillations are shown to result from drift-motion assisted electron scatterings between Landau levels. The theoretical predictions not only reproduce all the main features observed in the experiments but also disclose other details of the phenomenon.Comment: 4 pages, 3 figures, published versio

    Effect of Decoherence on the Dynamics of Bose-Einstein Condensates in a Double-well Potential

    Full text link
    We study the dynamics of a Bose-Einstein condensate in a double-well potential in the mean-field approximation. Decoherence effects are considered by analyzing the couplings of the condensate to environments. Two kinds of coupling are taken into account. With the first kind of coupling dominated, the decoherence can enhance the self-trapping by increasing the damping of the oscillations in the dynamics, while the decoherence from the second kind of condensate-environment coupling leads to spoiling of the quantum tunneling and self-trapping.Comment: for color figures, see PR
    corecore