592,761 research outputs found
Information Flow, Non-Markovianity and Geometric Phases
Geometric phases and information flows of a two-level system coupled to its
environment are calculated and analyzed. The information flow is defined as a
cumulant of changes in trace distance between two quantum states, which is
similar to the measure for non-Markovianity given by Breuer. We obtain an
analytic relation between the geometric phase and the information flow for pure
initial states, and a numerical result for mixed initial states. The geometric
phase behaves differently depending on whether there are information flows back
to the two-level system from its environment.Comment: 12 pages, 11 figure
Multilevel quantum Otto heat engines with identical particles
A quantum Otto heat engine is studied with multilevel identical particles
trapped in one-dimensional box potential as working substance. The symmetrical
wave function for Bosons and the anti-symmetrical wave function for Fermions
are considered. In two-particle case, we focus on the ratios of ()
to , where and are the work done by two Bosons and Fermions
respectively, and is the work output of a single particle under the same
conditions. Due to the symmetric of the wave functions, the ratios are not
equal to . Three different regimes, low temperature regime, high temperature
regime, and intermediate temperature regime, are analyzed, and the effects of
energy level number and the differences between the two baths are calculated.
In the multiparticle case, we calculate the ratios of to , where
can be seen as the average work done by a single particle in
multiparticle heat engine.
For other working substances whose energy spectrum have the form of , the results are similar. For the case , two different
conclusions are obtained
Current-induced magnetoresistance oscillations in two-dimensional electron systems
Electric current-induced magnetoresistance oscillations recently discovered
in two-dimensional electron systems are analyzed using a microscopic scheme for
nonlinear magnetotransport direct controlled by the current. The
magnetoresistance oscillations are shown to result from drift-motion assisted
electron scatterings between Landau levels. The theoretical predictions not
only reproduce all the main features observed in the experiments but also
disclose other details of the phenomenon.Comment: 4 pages, 3 figures, published versio
Effect of Decoherence on the Dynamics of Bose-Einstein Condensates in a Double-well Potential
We study the dynamics of a Bose-Einstein condensate in a double-well
potential in the mean-field approximation. Decoherence effects are considered
by analyzing the couplings of the condensate to environments. Two kinds of
coupling are taken into account. With the first kind of coupling dominated, the
decoherence can enhance the self-trapping by increasing the damping of the
oscillations in the dynamics, while the decoherence from the second kind of
condensate-environment coupling leads to spoiling of the quantum tunneling and
self-trapping.Comment: for color figures, see PR
- …
