198 research outputs found
Design and Implementation of Access Control and Delegation Model in Road Transport Management System
Strange nonchaotic attractors in noise driven systems
Strange nonchaotic attractors (SNAs) in noise driven systems are
investigated. Before the transition to chaos, due to the effect of noise, a
typical trajectory will wander between the periodic attractor and its nearby
chaotic saddle in an intermittent way, forms a strange attractor gradually. The
existence of SNAs is confirmed by simulation results of various critera both in
map and continuous systems. Dimension transition is found and intermittent
behavior is studied by peoperties of local Lyapunov exponent. The universality
and generalization of this kind of SNAs are discussed and common features are
concluded
One-loop Evolution of a Rolling Tachyon
We study the time evolution of the one-loop diagram in Sen's rolling tachyon
background. We find that at least in the long cylinder case they grow rapidly
at late time, due to the exponential growth of the timelike oscillator terms in
the boundary state. This can also be interpreted as the virtual open string
pair creation in the decaying brane. This behavior indicates a breakdown of
this rolling tachyon solution at some point during the evolution. We also
discuss the closed string emission from this one-loop diagram, and the
evolution of a one-loop diagram connecting a decaying brane to a stable brane,
which is responsible for the physical open string creation on the stable brane.Comment: 21 pages, 2 figures; v2: references added, comments revised in
various places; v3: footnotes 7&8 added, revised version to appear in PR
Cosmological Rescaling through Warped Space
We discuss a scenario where at least part of the homogeneity on a brane world
can be directly related to the hierarchy problem through warped space. We study
the dynamics of an anti-D3-brane moving toward the infrared cut-off of a warped
background. After a region described by the DBI action, the self-energy of the
anti-D3-brane will dominate over the background. Then the world-volume scale of
the anti-D3-brane is no longer comoving with the background geometry. After it
settles down in the infrared end, the world-volume inhomogeneity will appear,
to a Poincare observer, to be stretched by an exponentially large ratio. This
ratio is close to that of the hierarchy problem between the gravitational and
electroweak scales.Comment: 12 pages, 2 figures; v2, PRD version, comments and references adde
Inflation from Warped Space
A long period of inflation can be triggered when the inflaton is held up on
the top of a steep potential by the infrared end of a warped space. We first
study the field theory description of such a model. We then embed it in the
flux stabilized string compactification. Some special effects in the throat
reheating process by relativistic branes are discussed. We put all these
ingredients into a multi-throat brane inflationary scenario. The resulting
cosmic string tension and a multi-throat slow-roll model are also discussed.Comment: 39 pages; v4, added reference, to appear in JHE
Effects and Detectability of Quasi-Single Field Inflation in the Large-Scale Structure and Cosmic Microwave Background
Quasi-single field inflation predicts a peculiar momentum dependence in the
squeezed limit of the primordial bispectrum which smoothly interpolates between
the local and equilateral models. This dependence is directly related to the
mass of the isocurvatons in the theory which is determined by the
supersymmetry. Therefore, in the event of detection of a non-zero primordial
bispectrum, additional constraints on the parameter controlling the
momentum-dependence in the squeezed limit becomes an important question. We
explore the effects of these non-Gaussian initial conditions on large-scale
structure and the cosmic microwave background, with particular attention to the
galaxy power spectrum at large scales and scale-dependence corrections to
galaxy bias. We determine the simultaneous constraints on the two parameters
describing the QSF bispectrum that we can expect from upcoming large-scale
structure and cosmic microwave background observations. We find that for
relatively large values of the non-Gaussian amplitude parameters, but still
well within current uncertainties, galaxy power spectrum measurements will be
able to distinguish the QSF scenario from the predictions of the local model. A
CMB likelihood analysis, as well as Fisher matrix analysis, shows that there is
also a range of parameter values for which Planck data may be able distinguish
between QSF models and the related local and equilateral shapes. Given the
different observational weightings of the CMB and LSS results, degeneracies can
be significantly reduced in a joint analysis.Comment: 27 pages, 14 figure
Observational Signatures and Non-Gaussianities of General Single Field Inflation
We perform a general study of primordial scalar non-Gaussianities in single
field inflationary models in Einstein gravity. We consider models where the
inflaton Lagrangian is an arbitrary function of the scalar field and its first
derivative, and the sound speed is arbitrary. We find that under reasonable
assumptions, the non-Gaussianity is completely determined by 5 parameters. In
special limits of the parameter space, one finds distinctive ``shapes'' of the
non-Gaussianity. In models with a small sound speed, several of these shapes
would become potentially observable in the near future. Different limits of our
formulae recover various previously known results.Comment: 53 pages, 5 figures; v3, minor revision, JCAP version; v4, numerical
coefficients corrected in Appendix B, discussion on consistency condition
revise
Observational Signatures and Non-Gaussianities of General Single Field Inflation
We perform a general study of primordial scalar non-Gaussianities in single
field inflationary models in Einstein gravity. We consider models where the
inflaton Lagrangian is an arbitrary function of the scalar field and its first
derivative, and the sound speed is arbitrary. We find that under reasonable
assumptions, the non-Gaussianity is completely determined by 5 parameters. In
special limits of the parameter space, one finds distinctive ``shapes'' of the
non-Gaussianity. In models with a small sound speed, several of these shapes
would become potentially observable in the near future. Different limits of our
formulae recover various previously known results.Comment: 53 pages, 5 figures; v3, minor revision, JCAP version; v4, numerical
coefficients corrected in Appendix B, discussion on consistency condition
revise
Is Brane Inflation Eternal?
In this paper, we show that eternal inflation of the random walk type is
generically absent in the brane inflationary scenario. Depending on how the
brane inflationary universe originated, eternal inflation of the false vacuum
type is still quite possible. Since the inflaton is the position of the
D3-brane relative to the anti-D3-brane inside the compactified bulk with finite
size, its value is bounded. In DBI inflation, the warped space also restricts
the amplitude of the scalar fluctuation. These upper bounds impose strong
constraints on the possibility of eternal inflation. We find that eternal
inflation due to the random walk of the inflaton field is absent in both the
KKLMMT slow roll scenario and the DBI scenario. A more careful analysis for the
slow-roll case is also presented using the Langevin equation, which gives very
similar results. We discuss possible ways to obtain eternal inflation of the
random walk type in brane inflation. In the multi-throat brane inflationary
scenario, the branes may be generated by quantum tunneling and roll out the
throat. Eternal inflation of the false vacuum type inevitably happens in this
scenario due to the tunneling process. Since these scenarios have different
cosmological predictions, more data from the cosmic microwave background
radiation will hopefully select the specific scenario our universe has gone
through.Comment: 32 pages; v2: references and comments adde
Duality Cascade in Brane Inflation
We show that brane inflation is very sensitive to tiny sharp features in
extra dimensions, including those in the potential and in the warp factor. This
can show up as observational signatures in the power spectrum and/or
non-Gaussianities of the cosmic microwave background radiation (CMBR). One
general example of such sharp features is a succession of small steps in a
warped throat, caused by Seiberg duality cascade using gauge/gravity duality.
We study the cosmological observational consequences of these steps in brane
inflation. Since the steps come in a series, the prediction of other steps and
their properties can be tested by future data and analysis. It is also possible
that the steps are too close to be resolved in the power spectrum, in which
case they may show up only in the non-Gaussianity of the CMB temperature
fluctuations and/or EE polarization. We study two cases. In the slow-roll
scenario where steps appear in the inflaton potential, the sensitivity of brane
inflation to the height and width of the steps is increased by several orders
of magnitude comparing to that in previously studied large field models. In the
IR DBI scenario where steps appear in the warp factor, we find that the
glitches in the power spectrum caused by these sharp features are generally
small or even unobservable, but associated distinctive non-Gaussianity can be
large. Together with its large negative running of the power spectrum index,
this scenario clearly illustrates how rich and different a brane inflationary
scenario can be when compared to generic slow-roll inflation. Such distinctive
stringy features may provide a powerful probe of superstring theory.Comment: Corrections in Eq.(5.47), Eq (5.48), Eq(5.49) and Fig
- …
