64 research outputs found

    Fragile X Mental Retardation Protein Regulates Proliferation and Differentiation of Adult Neural Stem/Progenitor Cells

    Get PDF
    Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of functional fragile X mental retardation protein (FMRP). FMRP is an RNA–binding protein that can regulate the translation of specific mRNAs. Adult neurogenesis, a process considered important for neuroplasticity and memory, is regulated at multiple molecular levels. In this study, we investigated whether Fmrp deficiency affects adult neurogenesis. We show that in a mouse model of fragile X syndrome, adult neurogenesis is indeed altered. The loss of Fmrp increases the proliferation and alters the fate specification of adult neural progenitor/stem cells (aNPCs). We demonstrate that Fmrp regulates the protein expression of several components critical for aNPC function, including CDK4 and GSK3β. Dysregulation of GSK3β led to reduced Wnt signaling pathway activity, which altered the expression of neurogenin1 and the fate specification of aNPCs. These data unveil a novel regulatory role for Fmrp and translational regulation in adult neurogenesis

    The seventh blind test of crystal structure prediction: structure generation methods

    Get PDF
    A seventh blind test of crystal structure prediction was organized by the Cambridge Crystallographic Data Centre featuring seven target systems of varying complexity: a silicon and iodine-containing molecule, a copper coordination complex, a near-rigid molecule, a cocrystal, a polymorphic small agrochemical, a highly flexible polymorphic drug candidate, and a polymorphic morpholine salt. In this first of two parts focusing on structure generation methods, many crystal structure prediction (CSP) methods performed well for the small but flexible agrochemical compound, successfully reproducing the experimentally observed crystal structures, while few groups were successful for the systems of higher complexity. A powder X-ray diffraction (PXRD) assisted exercise demonstrated the use of CSP in successfully determining a crystal structure from a low-quality PXRD pattern. The use of CSP in the prediction of likely cocrystal stoichiometry was also explored, demonstrating multiple possible approaches. Crystallographic disorder emerged as an important theme throughout the test as both a challenge for analysis and a major achievement where two groups blindly predicted the existence of disorder for the first time. Additionally, large-scale comparisons of the sets of predicted crystal structures also showed that some methods yield sets that largely contain the same crystal structures

    Traditional Chinese Medicine for Acute Myocardial Infarction in Western Medicine Hospitals in China

    Get PDF
    Background: Amid national efforts to improve the quality of care for people with cardiovascular disease in China, the use of traditional Chinese medicine (TCM) is increasing, yet little is known about its use in the early management of acute myocardial infarction (AMI). Methods and Results: We aimed to examine intravenous use of TCM within the first 24 hours of hospitalization (early IV TCM) for AMI. Data come from the China Patient-centered Evaluative Assessment of Cardiac Events Retrospective Study of Acute Myocardial Infarction, restricted to a large, representative sample of Western medicine hospitals throughout China (n=162). We conducted a chart review of randomly sampled patients with AMI in 2001, 2006, and 2011, comparing early intravenous TCM use across years, predictors of any early intravenous TCM use, and association with in-hospital bleeding and mortality. From 2001 to 2011, early intravenous TCM use increased (2001: 38.2% versus 2006: 49.1% versus 2011: 56.1%; P<0.01). Nearly all (99%) hospitals used early intravenous TCM. Salvia miltiorrhiza was most commonly prescribed, used in one third (35.5%) of all patients admitted with AMI. Patients receiving any early intravenous TCM, compared with those who did not, were similar in age and sex and had fewer cardiovascular risk factors. In multivariable hierarchical models, admission to a secondary (versus tertiary) hospital was most strongly associated with early intravenous TCM use (odds ratio: 2.85; 95% confidence interval: 1.98–4.11). Hospital-level factors accounted for 55% of the variance (adjusted median odds ratio: 2.84). In exploratory analyses, there were no significant associations between early intravenous TCM and in-hospital bleeding or mortality. Conclusions: Early intravenous TCM use for AMI in China is increasing despite the lack of evidence of their benefit or harm. There is an urgent need to define the effects of these medications because they have become a staple of treatment in the world’s most populous country. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT0162488

    The Imaging Resolution and Knudsen Effect on the Mass Transport of Shale Gas Assisted by Multi-length Scale X-Ray Computed Tomography

    No full text
    AbstractThe spatial resolution of 3D imaging techniques is often balanced by the achievable field of view. Since pore size in shales spans more than two orders of magnitude, a compromise between representativeness and accuracy of the 3D reconstructed shale microstructure is needed. In this study, we characterise the effect of imaging resolution on the microstructural and mass transport characteristics of shales using micro and nano-computed tomography. 3D mass transport simulation using continuum and numerical physics respectively is also compared to highlight the significance of the Knudsen effect on the reconstructed solid surface. The result shows that porosity measured by micro-CT is 25% lower than nano-CT, resulting in an overestimated pore size distribution and underestimated pore connectivity. This leads to a higher simulated intrinsic permeability. An overestimated diffusive flux and underestimated permeability are obtained from the continuum mass transport simulation compared to the numerical ones when the molecular-wall collision is accounted, evidenced by the large deviation of the measured Knudsen tortuosity factor and permeability correction factor. This study is believed to provide new knowledge in understanding the importance of imaging resolution and gas flow physics on mass transport in porous media.</jats:p

    Multi-length scale tomography for the determination and optimization of the effective microstructural properties in novel hierarchical solid oxide fuel cell anodes

    No full text
    Effective microstructural properties are critical in determining the electrochemical performance of solid oxide fuel cells (SOFCs), particularly when operating at high current densities. A novel tubular SOFC anode with a hierarchical microstructure, composed of self-organized micro-channels and sponge-like regions, has been fabricated by a phase inversion technique to mitigate concentration losses. However, since pore sizes span over two orders of magnitude, the determination of the effective transport parameters using image-based techniques remains challenging. Pioneering steps are made in this study to characterize and optimize the microstructure by coupling multi-length scale 3D tomography and modeling. The results conclusively show that embedding finger-like micro-channels into the tubular anode can improve the mass transport by 250% and the permeability by 2â\u80\u933 orders of magnitude. Our parametric study shows that increasing the porosity in the spongy layer beyond 10% enhances the effective transport parameters of the spongy layer at an exponential rate, but linearly for the full anode. For the first time, local and global mass transport properties are correlated to the microstructure, which is of wide interest for rationalizing the design optimization of SOFC electrodes and more generally for hierarchical materials in batteries and membranes

    Porous 3D graphene aerogel co-doped with nitrogen and sulfur for high-performance supercapacitors

    Full text link
    Abstract Heteroatom-doped carbon materials with a high specific area, a well-defined porous structure is important to high-performance supercapacitors (SCs). Here, S and N co-doped three-dimensional porous graphene aerogel (NS-3DPGHs) have been synthesized in a facile and efficient self-assembly process with thiourea acting as the reducing and doping agent solution. Operating as a SC electrode, fabricated co-doping graphene, i.e. the sample of NS-3DPGH-150 exhibits the highest specific capacitance of 412.9 F g−1 under 0.5 A g−1 and prominent cycle stabilization with 96.4% capacitance retention in the back of 10 000 cycles. Furthermore, based on NS-3DPGH-150, the symmetrical supercapacitor as-prepared in 6 M KOH displays a superior energy density of 12.9 Wh kg−1 under the power density of 249 W kg−1. Hence, NS-3DPGHs could be considered as an excellent candidate for SCs.</jats:p
    corecore