6,367 research outputs found

    Proton-Antiproton Annihilation in Baryonium

    Full text link
    A possible interpretation of the near-threshold enhancement in the (ppˉ)(p\bar{p})-mass spectrum in J/ψγppˉJ/\psi{\to}\gamma p{\bar p} is the of existence of a narrow baryonium resonance X(1860). Mesonic decays of the (ppˉ)(p\bar{p})-bound state X(1860) due to the nucleon-antinucleon annihilation are investigated in this paper. Mesonic coherent states with fixed GG-parity and PP-parity have been constructed . The Amado-Cannata-Dedoder-Locher-Shao formulation(Phys Rev Lett. {\bf 72}, 970 (1994)) is extended to the decays of the X(1860). By this method, the branch-fraction ratios of Br(Xη4π)Br(X\to \eta 4\pi), Br(Xη2π)Br(X\to \eta 2\pi) and Br(X3η)Br(X\to 3\eta) are calculated. It is shown that if the X(1860) is a bound state of (ppˉ)(p\bar{p}), the decay channel (Xη4π)X\to \eta 4\pi) is favored over (Xη2π)(X\to \eta 2\pi). In this way, we develop criteria for distinguishing the baryonium interpretation for the near-threshold enhancement effects in (ppˉ)(p\bar{p})-mass spectrum in J/ψγppˉJ/\psi{\to}\gamma p{\bar p} from other possibilities. Experimental checks are expected. An intuitive picture for our results is discussed.Comment: 19 pages, 3 figure

    Thermopower peak in phase transition region of (1-x)La2/3_{2/3}Ca1/3_{1/3}MnO3_{3}/xYSZ

    Full text link
    The thermoelectric power (TEP) and the electrical resistivity of the intergranular magnetoresistance (IGMR) composite, (1-x)La2/3_{2/3}Ca1/3_{1/3}MnO3_{3}/xYSZ (LCMO/YSZ) with x = 0, 0.75%, 1.25%, 4.5%, 13% 15% and 80% of the yttria-stabalized zirconia (YSZ), have been measured from 300 K down to 77 K. Pronounced TEP peak appears during the phase transition for the samples of x >> 0, while not observed for x = 0. We suggest that this is due to the magnetic structure variation induced by the lattice strain which is resulting from the LCMO/YSZ boundary layers. The transition width in temperature derived from dχ/dTd\chi/dT, with χ\chi being the AC magnetic susceptibility, supports this interpretation.Comment: 4 pages, 4 eps figures, Latex, J. Appl. Phys 94, 7206 (2003

    Quantum correlation in three-qubit Heisenberg model with Dzyaloshinskii-Moriya interaction

    Full text link
    We investigate the pairwise thermal quantum discord in a three-qubit XXZ model with Dzyaloshinskii-Moriya (DM) interaction. We find that the DM interaction can increase quantum discord to a fixed value in the anti- ferromagnetic system, but decreases quantum discord to a minimum first, then increases it to a fixed value in the ferromagnetic system. Abrupt change of quantum discord is observed, which indicates the abrupt change of groundstate. Dynamics of pairwise thermal quantum discord is also considered. We show that thermal discord vanishes in asymptotic limit regardless of its initial values, while thermal entanglement suddenly disappears at finite time.Comment: 6 pages, 6 figure

    Pure spin current in a two-dimensional topological insulator

    Full text link
    We predict a mechanism to generate a pure spin current in a two-dimensional topological insulator. As the magnetic impurities exist on one of edges of the two-dimensional topological insulator, a gap is opened in the corresponding gapless edge states but another pair of gapless edge states with opposite spin are still protected by the time-reversal symmetry. So the conductance plateaus with the half-integer values e2/he^2/h can be obtained in the gap induced by magnetic impurities, which means that the pure spin current can be induced in the sample. We also find that the pure spin current is insensitive to weak disorder. The mechanism to generate pure spin currents is generalized for two-dimensional topological insulators.Comment: 5 pages, 6 figure

    Rotational state microwave mixing for laser cooling of complex diatomic molecules

    Full text link
    We demonstrate the mixing of rotational states in the ground electronic state using microwave radiation to enhance optical cycling in the molecule yttrium (II) monoxide (YO). This mixing technique is used in conjunction with a frequency modulated and chirped continuous wave laser to slow longitudinally a cryogenic buffer gas beam of YO. We generate a measurable flux of YO below 10~m/s, directly loadable into a three-dimensional magneto-optical trap. This technique opens the door for laser cooling of molecules with more complex structure.Comment: 5 pages, 4 figure

    Large-deviation analysis for counting statistics in mesoscopic transports

    Full text link
    We present an efficient approach, based on a number-conditioned master equation, for large-deviation analysis in mesoscopic transports. Beyond the conventional full-counting-statistics study, the large-deviation approach encodes complete information of both the typical trajectories and the rare ones, in terms of revealing a continuous change of the dynamical phase in trajectory space. The approach is illustrated with two examples: (i) transport through a single quantum dot, where we reveal the inhomogeneous distribution of trajectories in general case and find a particular scale invariance point in trajectory statistics; and (ii) transport through a double dots, where we find a dynamical phase transition between two distinct phases induced by the Coulomb correlation and quantum interference.Comment: 8 pages, 3 figure

    Sensitive Room-Temperature Terahertz Detection via Photothermoelectric Effect in Graphene

    Full text link
    Terahertz (THz) radiation has uses from security to medicine; however, sensitive room-temperature detection of THz is notoriously difficult. The hot-electron photothermoelectric effect in graphene is a promising detection mechanism: photoexcited carriers rapidly thermalize due to strong electron-electron interactions, but lose energy to the lattice more slowly. The electron temperature gradient drives electron diffusion, and asymmetry due to local gating or dissimilar contact metals produces a net current via the thermoelectric effect. Here we demonstrate a graphene thermoelectric THz photodetector with sensitivity exceeding 10 V/W (700 V/W) at room temperature and noise equivalent power less than 1100 pW/Hz^1/2 (20 pW/Hz^1/2), referenced to the incident (absorbed) power. This implies a performance which is competitive with the best room-temperature THz detectors for an optimally coupled device, while time-resolved measurements indicate that our graphene detector is eight to nine orders of magnitude faster than those. A simple model of the response, including contact asymmetries (resistance, work function and Fermi-energy pinning) reproduces the qualitative features of the data, and indicates that orders-of-magnitude sensitivity improvements are possible.Comment: Published 07 September 2014 in Nature Nanotechnolog
    corecore