755 research outputs found
Disordered Fulde-Ferrel-Larkin-Ovchinnikov State in d-wave Superconductors
We study the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) superconducting state in
the disordered systems. We analyze the microscopic model, in which the d-wave
superconductivity is stabilized near the antiferromagnetic quantum critical
point, and investigate two kinds of disorder, namely, box disorder and point
disorder, on the basis of the Bogoliubov-deGennes (BdG) equation. The spatial
structure of modulated superconducting order parameter and the magnetic
properties in the disordered FFLO state are investigated. We point out the
possibility of "FFLO glass" state in the presence of strong point disorders,
which arises from the configurational degree of freedom of FFLO nodal plane.
The distribution function of local spin susceptibility is calculated and its
relation to the FFLO nodal plane is clarified. We discuss the NMR measurements
for CeCoIn_5.Comment: Submitted to New. J. Phys. a focus issue on "Superconductors with
Exotic Symmetries
Testing Higgs models via the vertex by a recoil method at the International Linear Collider
In general, charged Higgs bosons appear in non-minimal Higgs models.
The vertex is known to be related to the violation of the
global symmetry (custodial symmetry) in the Higgs sector. Its magnitude
strongly depends on the structure of the exotic Higgs models which contain
higher isospin representations such as triplet Higgs bosons. We study
the possibility of measuring the vertex via single charged
Higgs boson production associated with the boson at the International
Linear Collider (ILC) by using the recoil method. The feasibility of the signal
is analyzed assuming the polarized
electron and positron beams and the expected detector performance for the
resolution of the two-jet system at the ILC. The background events can be
reduced to a considerable extent by imposing the kinematic cuts even if we take
into account the initial state radiation. For a relatively light charged Higgs
boson whose mass is in the region of 120-130 GeV , the vertex would be precisely testable especially
when the decay of is lepton specific. The exoticness of the extended
Higgs sector can be explored by using combined information for this vertex and
the rho parameter.Comment: 22 pages, 23 figure
Random Spin-orbit Coupling in Spin Triplet Superconductors: Stacking Faults in Sr_2RuO_4 and CePt_3Si
The random spin-orbit coupling in multicomponent superconductors is
investigated focusing on the non-centrosymmetric superconductor CePt_3Si and
the spin triplet superconductor Sr_2RuO_4. We find novel manifestations of the
random spin-orbit coupling in the multicomponent superconductors with
directional disorders, such as stacking faults. The presence of stacking faults
is indicated for the disordered phase of CePt_3Si and Sr_2RuO_4. It is shown
that the d-vector of spin triplet superconductivity is locked to be d = k_y x -
k_x y with the anisotropy \Delta T_c/T_c0 \sim \bar{\alpha}^2/T_c0 W_z, where
\bar{\alpha}, T_c0, and W_z are the mean square root of random spin-orbit
coupling, the transition temperature in the clean limit, and the kinetic energy
along the c-axis, respectively. This anisotropy is much larger (smaller) than
that in the clean bulk Sr_2RuO_4 (CePt_3Si). These results indicate that the
helical pairing state d = k_y x - k_x y in the eutectic crystal
Sr_2RuO_4-Sr_3Ru_2O_7 is stabilized in contrast to the chiral state d = (k_x
\pm i k_y) z in the bulk Sr_2RuO_4. The unusual variation of T_c in CePt_3Si is
resolved by taking into account the weak pair-breaking effect arising from the
uniform and random spin-orbit couplings. These superconductors provide a basis
for discussing recent topics on Majorana fermions and non-Abelian statistics.Comment: J. Phys. Soc. Jpn. 79 (2010) 08470
Reduction of Tc due to Impurities in Cuprate Superconductors
In order to explain how impurities affect the unconventional
superconductivity, we study non-magnetic impurity effect on the transition
temperature using on-site U Hubbard model within a fluctuation exchange (FLEX)
approximation. We find that in appearance, the reduction of Tc roughly
coincides with the well-known Abrikosov-Gor'kov formula. This coincidence
results from the cancellation between two effects; one is the reduction of
attractive force due to randomness, and another is the reduction of the damping
rate of quasi-particle arising from electron interaction. As another problem,
we also study impurity effect on underdoped cuprate as the system showing
pseudogap phenomena. To the aim, we adopt the pairing scenario for the
pseudogap and discuss how pseudogap phenomena affect the reduction of Tc by
impurities. We find that 'pseudogap breaking' by impurities plays the essential
role in underdoped cuprate and suppresses the Tc reduction due to the
superconducting (SC) fluctuation.Comment: 14 pages, 28 figures To be published in JPS
Bounds on Decoherence and Error
When a confined system interacts with its walls (treated quantum
mechanically), there is an intertwining of degrees of freedom. We show that
this need not lead to entanglement, hence decoherence. It will generally lead
to error. The wave function optimization required to avoid decoherence is also
examined.Comment: 10 pages, plain TeX, no figure
Antiferromagnetic Order and \pi-triplet Pairing in the Fulde-Ferrell-Larkin-Ovchinnikov State
The antiferromagnetic Fulde-Ferrell-Larkin-Ovchinnikov (AFM-FFLO) state of
coexisting d-wave FFLO superconductivity and incommensurate AFM order is
studied on the basis of Bogoliubov-de Gennes (BdG) equations. We show that the
incommensurate AFM order is stabilized in the FFLO state by the appearance of
the Andreev bound state localized around the zeros of the FFLO order parameter.
The AFM-FFLO state is further enhanced by the induced \pi-triplet
superconductivity (pair density wave). The AFM order occurs in the FFLO state
even when it is neither stable in the normal state nor in the BCS state. The
order parameters of the AFM order, d-wave superconductivity, and \pi-triplet
pairing are investigated by focusing on their spatial structures. Roles of the
spin fluctuations beyond the BdG equations are discussed. Their relevance to
the high-field superconducting phase of CeCoIn_5 is discussed.Comment: Typos are fixed. Published versio
Effects of proximity to an electronic topological transition on normal state transport properties of the high-Tc superconductors
Within the time dependent Ginzburg-Landau theory, the effects of the
superconducting fluctuations on the transport properties above the critical
temperature are characterized by a non-zero imaginary part of the relaxation
rate gamma of the order parameter. Here, we evaluate Im gamma for an
anisotropic dispersion relation typical of the high-Tc cuprate superconductors
(HTS), characterized by a proximity to an electronic topological transition
(ETT). We find that Im gamma abruptly changes sign at the ETT as a function of
doping, in agreement with the universal behavior of the HTS. We also find that
an increase of the in-plane anisotropy, as is given by a non-zero value of the
next-nearest to nearest hopping ratio r=t'/t, increases the value of | Im gamma
| close to the ETT, as well as its singular behavior at low temperature,
therefore enhancing the effect of superconducting fluctuations. Such a result
is in qualitative agreement with the available data for the excess Hall
conductivity for several cuprates and cuprate superlattices.Comment: to appear in Phys. Rev.
Electronic structure of spinel-type LiV_2O_4
The band structure of the cubic spinel compound LiV_2O_4, which has been
reported recently to show heavy Fermion behavior, has been calculated within
the local-density approximation using a full-potential version of the linear
augmented-plane-wave method. The results show that partially-filled V 3d bands
are located about 1.9 eV above the O 2p bands and the V 3d bands are split into
a lower partially-filled t_{2g} complex and an upper unoccupied e_{g} manifold.
The fact that the conduction electrons originate solely from the t_{2g} bands
suggests that the mechanism for the mass enhancement in this system is
different from that in the 4f heavy Fermion systems, where these effects are
attributed to the hybridization between the localized 4f levels and itinerant
spd bands.Comment: 5 pages, revte
Antiferromagnetic Phases in the Fulde-Ferrell-Larkin-Ovchinnikov State of CeCoIn_5
The antiferromagnetic (AFM) order in the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) superconducting state is analyzed on the basis of a Ginzburg-Landau
theory. To examine the possible AFM-FFLO state in CeCoIn_5, we focus on the
incommensurate AFM order characterized by the wave vector Q = Q_{0} \pm q_inc
with Q_0 =(\pi,\pi,\pi) and q_inc \parallel [110] or [1-10] in the tetragonal
crystal structure. We formulate the two component Ginzburg-Landau theory and
investigate the two degenerate incommensurate AFM order. We show that the
pinning of AFM moment due to the FFLO nodal planes leads to multiple phases in
magnetic fields along [100] or [010]. The phase diagrams for various coupling
constants between the two order parameters are shown for the comparison with
CeCoIn_5. Experimental results of the NMR and neutron scattering measurements
are discussed.Comment: 6pages, Proceedings of ICHE2010, To appear in J. Phys. Soc. Jpn.
Supp
Possibility of Unconventional Pairing Due to Coulomb Interaction in Fe-Based Pnictide Superconductors: Perturbative Analysis of Multi-Band Hubbard Models
Possibility of unconventional pairing due to Coulomb interaction in
iron-pnictide superconductors is studied by applying a perturbative approach to
realistic 2- and 5-band Hubbard models. The linearized Eliashberg equation is
solved by expanding the effective pairing interaction perturbatively up to
third order in the on-site Coulomb integrals. The numerical results for the
5-band model suggest that the eigenvalues of the Eliashberg equation are
sufficiently large to explain the actual high Tc for realistic values of
Coulomb interaction and the most probable pairing state is spin-singlet s-wave
without any nodes just on the Fermi surfaces, although the superconducting
order parameter changes its sign between the small Fermi pockets. On the other
hand the 2-band model is quite insufficient to explain the actual high Tc.Comment: 2 pages, 3 figures. Proceedings of the Intl. Symposium on
Fe-Oxypnictide Superconductors (Tokyo, 28-29th June 2008
- …
