1,000 research outputs found
Spectral and Timing Properties of IGR J17091-3624 in the Rising Hard State During its 2016 Outburst
We present a spectral and timing study of the NuSTAR and Swift observations
of the black hole candidate IGR J17091-3624 in the hard state during its
outburst in 2016. Disk reflection is detected in each of the NuSTAR spectra
taken in three epochs. Fitting with relativistic reflection models reveals that
the accretion disk is truncated during all epochs with , with the data favoring a low disk inclination of . The steepening of the continuum spectra between epochs
is accompanied by a decrease in the high energy cut-off: the electron
temperature drops from keV to keV, changing
systematically with the source flux. We detect type-C QPOs in the power spectra
with frequency varying between 0.131 Hz and 0.327 Hz. In addition, a secondary
peak is found in the power spectra centered at about 2.3 times the QPO
frequency during all three epochs. The nature of this secondary frequency is
uncertain, however a non-harmonic origin is favored. We investigate the
evolution of the timing and spectral properties during the rising phase of the
outburst and discuss their physical implications.Comment: 11 pages, 9 figures, accepted by Ap
Prediction of Gas Consumption in Transportation Based on Grey System Theory
Prediction of gasoline consumption in transportation accurately has important reference value for the scientific planning and decision making on the energy needs and environmental protection. For the lack of historical data of gasoline consumption in transportation, a grey gas consumption prediction model is built based on grey system modeling and the analysis of degree of grey incidence and residual. Contrastive analysis of specific value of the variance and small error probability of a case study with accuracy grades indicated that the gray gas consumption prediction model is fitting precisely and reliable
Circumventing qPCR inhibition to amplify miRNAs in plasma
Background: Circulating microRNAs (c-miRNAs) have be identified in saliva, urine and blood, which has led to increasing interest in their development as biomarkers for diverse diseases including cancers. One of the key advantages of c-miRNAs over other biomarkers is the ability to be amplified and quantified by quantitative PCR (qPCR). However, at phlebotomy when whole blood is dispensed into heparinized tubes, residual levels of the anti-coagulant lithium heparin may remain in the plasma and hence with RNA isolated from the plasma. This can confound the detection of c-miRNAs by qPCR because it inhibits reverse transcriptase (RT). Here we present a procedure, modified from earlier techniques, to detect c-miRNAs in plasma that improves sensitivity and streamlines performance.Findings: Treatment of total RNA isolated from human blood plasma with Bacteroides heparinase I during reverse transcription at 37°C for one hour improved sensitivity and performance of the qPCR. This is in comparison to no treatment or treatment of the RNA prior to RT, which is the current suggested method and exposes plasma to Flavobacterium heparinum heparinase I for up to 2 hours before RT. This modest alteration improved qPCR performance and resulted in lowered threshold cycles (C) for detection of the target sequence, candidate c-miRNA biomarkers, and controls. It also reduced the expense and number of processing steps, shortening the duration of the assay and minimizing exposure of RNA to elevated temperatures.Conclusion: Incorporating Bacteroides heparinase I treatment into conventional RT protocols targeting c-miRNA in plasma can be expected to expedite the discovery of biomarkers
Rewritable nanoscale oxide photodetector
Nanophotonic devices seek to generate, guide, and/or detect light using
structures whose nanoscale dimensions are closely tied to their functionality.
Semiconducting nanowires, grown with tailored optoelectronic properties, have
been successfully placed into devices for a variety of applications. However,
the integration of photonic nanostructures with electronic circuitry has always
been one of the most challenging aspects of device development. Here we report
the development of rewritable nanoscale photodetectors created at the interface
between LaAlO3 and SrTiO3. Nanowire junctions with characteristic dimensions
2-3 nm are created using a reversible AFM writing technique. These nanoscale
devices exhibit a remarkably high gain for their size, in part because of the
large electric fields produced in the gap region. The photoconductive response
is gate-tunable and spans the visible-to-near-infrared regime. The ability to
integrate rewritable nanoscale photodetectors with nanowires and transistors in
a single materials platform foreshadows new families of integrated
optoelectronic devices and applications.Comment: 5 pages, 5 figures. Supplementary Information 7 pages, 9 figure
Loss-of-function mutations in Lysyl-tRNA synthetase cause various leukoencephalopathy phenotypes
Objective: To expand the clinical spectrum of lysyl-tRNA synthetase (KARS) gene–related diseases, which so far includes Charcot-Marie-Tooth disease, congenital visual impairment and microcephaly, and nonsyndromic hearing impairment.
Methods: Whole-exome sequencing was performed on index patients from 4 unrelated families with leukoencephalopathy. Candidate pathogenic variants and their cosegregation were confirmed by Sanger sequencing. Effects of mutations on KARS protein function were examined by aminoacylation assays and yeast complementation assays.
Results: Common clinical features of the patients in this study included impaired cognitive ability, seizure, hypotonia, ataxia, and abnormal brain imaging, suggesting that the CNS involvement is the main clinical presentation. Six previously unreported and 1 known KARS mutations were identified and cosegregated in these families. Two patients are compound heterozygous for missense mutations, 1 patient is homozygous for a missense mutation, and 1 patient harbored an insertion mutation and a missense mutation. Functional and structural analyses revealed that these mutations impair aminoacylation activity of lysyl-tRNA synthetase, indicating that de- fective KARS function is responsible for the phenotypes in these individuals.
Conclusions: Our results demonstrate that patients with loss-of-function KARS mutations can manifest CNS disorders, thus broadening the phenotypic spectrum associated with KARS-related disease
Distinct miRNA signatures associate with subtypes of cholangiocarcinoma from infection with the tumourigenic liver fluke Opisthorchis viverrini
Background & Aims: Intrahepatic cholangiocarcinoma (ICC) is a significant public health problem in East Asia, where it is strongly associated with chronic infection by the food-borne parasite Opisthorchis viverrini (OV). We report the first comprehensive miRNA expression profiling by microarray of the most common histologic grades and subtypes of ICC: well differentiated, moderately differentiated, and papillary ICC. Methods: MicroRNA expression profiles from FFPE were compared among the following: ICC tumour tissue (n = 16), nontumour tissue distally macrodissected from the same ICC tumour block (n = 15), and normal tissue (n = 13) from individuals undergoing gastric bypass surgery. A panel of deregulated miRNAs was validated by qPCR. Results: Each histologic grade and subtype of ICC displayed a distinct miRNA profile, with no cohort of miRNAs emerging as commonly deregulated. Moderately differentiated ICC showed the greatest miRNA deregulation in quantity and magnitude, followed by the papillary subtype, and then well differentiated ICC. Moreover, when ICC tumour tissues were compared to adjacent non-tumour tissue, similar miRNA dysregulation profiles were observed. Conclusions: We show that common histologic grades and subtypes of ICC have distinct miRNA profiles. As histological grade and subtypes are associated with ICC aggressiveness, these profiles could be used to enhance the early detection and improve the personalised treatment for ICC. These findings also suggest the involvement of specific miRNAs during ICC tumour progression and differentiation. We plan to use these insights to (a) detect these profiles in circulation and (b) conduct functional analyses to decipher the roles of miRNAs in ICC tumour differentiation
Metabotyping of docosahexaenoic acid - Treated alzheimer's disease cell model
10.1371/journal.pone.0090123PLoS ONE92-POLN
Alterations in Phosphorylated CREB Expression in Different Brain Regions following Short- and Long-Term Morphine Exposure: Relationship to Food Intake
Background. Activation of the cyclic adenosine monophosphate (cAMP)/phosphorylated CREB (P-CREB) system in different brain regions has been implicated in mediating opioid tolerance and dependence, while alteration of this system in the lateral hypothalamus (LH) has been suggested to have a role in food intake and body weight. Methods. Given that opioids regulate food intake, we measured P-CREB in different brain regions in mice exposed to morphine treatments designed to induce different degrees of tolerance and dependence. Results. We found that a single morphine injection or daily morphine injections for 8 days did not influence P-CREB levels, while the escalating dose of morphine regimen raised P-CREB levels only in the ventral tegmental area (VTA). Chronic morphine pellet implantation for 7 days raised P-CREB levels in the LH, VTA, and dorsomedial nucleus of the hypothalamus (DM) but not in the nucleus accumbens and amygdala. Increased P-CREB levels in LH, VTA, and DM following 7-day treatment with morphine pellets and increased P-CREB levels in the VTA following escalating doses of morphine were associated with decreased food intake and body weight. Conclusion. The morphine regulation of P-CREB may explain some of the physiological sequelae of opioid exposure including altered food intake and body weight
A relational model of perceived overqualification : the moderating role of interpersonal influence on social acceptance.
Theories of perceived overqualification have tended to focus on employees’ job-related responses to account for effects on performance. We offer an alternative perspective and theorize that perceived overqualification could influence work performance through a relational mechanism. We propose that relational skills, in the form of interpersonal influence of overqualified employees, determine their tendency to experience social acceptance and, thus, engage in positive work-related behaviors. We tested this relational model across two studies using time-lagged, multisource data. In Study 1, the results indicated that for employees high on interpersonal influence, perceived overqualification was positively related to self-reported social acceptance, whereas for employees low on interpersonal influence, the relationship was negative. Social acceptance, in turn, was positively related to in-role job performance, interpersonal altruism, and team member proactivity evaluated by supervisors. In Study 2, we focused on peer-reported social acceptance and found that the indirect relationships between perceived overqualification and supervisor-reported behavioral outcomes via social acceptance were negative when interpersonal influence was low and nonsignificant when interpersonal influence was high. The implications of the general findings are discussed
- …
