1,557 research outputs found

    Natural optical activity and its control by electric field in electrotoroidic systems

    Get PDF
    We propose the existence, via analytical derivations, novel phenomenologies, and first-principles-based simulations, of a new class of materials that are not only spontaneously optically active, but also for which the sense of rotation can be switched by an electric field applied to them-- via an induced transition between the dextrorotatory and laevorotatory forms. Such systems possess electric vortices that are coupled to a spontaneous electrical polarization. Furthermore, our atomistic simulations provide a deep microscopic insight into, and understanding of, this class of naturally optically active materials.Comment: 3 figure

    Orbital magnetization and its effects in spin-chiral ferromagnetic Kagome lattice

    Full text link
    Recently, Berry phase in the semiclassical dynamical of Bloch electrons has been found to make a correction to the phase-space density of states and a general multi-band formula for finite-temperature orbital magnetization has been given [Phys. Rev. Lett. \textbf{97}, 026603 (2006)], where the orbital magnetization M\mathcal{M} consists of two parts, i.e., the conventional part McM_{c} and the Berry-phase correction part MΩM_{\Omega}. Using this general formula, we theoretically investigate the orbital magnetization and its effects on thermoelectric transport and magnetic susceptibility properties of the two-dimensional \textit{kagom\'{e}} lattice with spin anisotropies included. The study in this paper is highly interesting by the occurrence of nonzero Chern number in the lattice. The spin chirality parameter ϕ\phi (see text) results in profound effects on the orbital magnetization properties. It is found that the two parts in orbital magnetization opposite each other. In particular, we show that McM_{c} and MΩM_{\Omega} yield the paramagnetic and diamagnetic responses, respectively. It is further shown that the orbital magnetization displays fully different behavior in the metallic and insulating regions, which is due to the different roles McM_{c} and MΩM_{\Omega} play in these two regions. The anomalous Nernst conductivity is also calculated, which displays a peak-valley structure as a function of the electron Fermi energy.Comment: 9 pages, 7 figure

    Array-induced collective transport in the Brownian motion of coupled nonlinear oscillator systems

    Full text link
    Brownian motion of an array of harmonically coupled particles subject to a periodic substrate potential and driven by an external bias is investigated. In the linear response limit (small bias), the coupling between particles may enhance the diffusion process, depending on the competition between the harmonic chain and the substrate potential. An analytical formula of the diffusion rate for the single-particle case is also obtained. In the nonlinear response regime, the moving kink may become phase-locked to its radiated phonon waves, hence the mobility of the chain may decrease as one increases the external force.Comment: 4 figures, to appear in Phys. Rev.

    Trends in Elasticity and Electronic Structure of Transition-Metal Nitrides and Carbides from First Principles

    Full text link
    The elastic properties of the B1B_1-structured transition-metal nitrides and their carbide counterparts are studied using the {\it ab initio\} density functional perturbation theory. The linear response results of elastic constants are in excellent agreement with those obtained from numerical derivative methods, and are also consistent with measured data. We find the following trends: (1) Bulk moduli BB and tetragonal shear moduli G=(C11C12)/2G^{\prime}=(C_{11}-C_{12})/2, increase and lattice constants a0a_{0} decrease rightward or downward on the Periodic Table for the metal component or if C is replaced by N; (2) The inequality B>G>G>0B > G^{\prime} > G > 0 holds for G=C44G=C_{44}; (3) GG depends strongly on the number of valence electrons per unit cell (ZVZ_{V}). From the fitted curve of GG as a function of ZVZ_{V}, we can predict that MoN is unstable in B1B_{1} structure, and transition-metal carbonitrides (e.g.e.g. ZrCx_{x}N1x_{1-x}) and di-transition-metal carbides (e.g.e.g. Hfx_{x}Ta1x_{1-x}C) have maximum GG at ZV8.3Z_{V} \approx 8.3.Comment: 4 pages, 2 figures, submitted to PRL. 2 typos in ref. 15 were correcte

    Resonant steps and spatiotemporal dynamics in the damped dc-driven Frenkel-Kontorova chain

    Full text link
    Kink dynamics of the damped Frenkel-Kontorova (discrete sine-Gordon) chain driven by a constant external force are investigated. Resonant steplike transitions of the average velocity occur due to the competitions between the moving kinks and their radiated phasonlike modes. A mean-field consideration is introduced to give a precise prediction of the resonant steps. Slip-stick motion and spatiotemporal dynamics on those resonant steps are discussed. Our results can be applied to studies of the fluxon dynamics of 1D Josephson-junction arrays and ladders, dislocations, tribology and other fields.Comment: 20 Plain Latex pages, 10 Eps figures, to appear in Phys. Rev.

    Electronic Structure of Calcium Hexaboride within the Weighted Density Approximation

    Full text link
    We report calculations of the electronic structure of CaB6_6 using the weighted density approximation (WDA) to density functional theory. We find a semiconducting band structure with a sizable gap, in contrast to local density approximation (LDA) results, but in accord with recent experimental data. In particular, we find an XX-point band gap of 0.8 eV. The WDA correction of the LDA error in describing the electronic structure of CaB6_6 is discussed in terms of the orbital character of the bands and the better cancelation of self-interactions within the WDA.Comment: 1 figur

    Intersession Reliability and Within-Session Stability of a Novel Perception-Action Coupling Task

    Get PDF
    BACKGROUND: The perception-action coupling task (PACT) was designed as a more ecologically valid measure of alertness/reaction times compared to currently used measures by aerospace researchers. The purpose of this study was to assess the reliability, within-subject variability, and systematic bias associated with the PACT. METHODS: There were 16 subjects (men/women = 9/7; age = 27.8 +/- 3.6 yr) who completed 4 identical testing sessions. The PACT requires subjects to make judgements on whether a virtual ball could fit into an aperture. For each session, subjects completed nine cycles of the PACT, with each cycle lasting 5 min. Judgement accuracy and reaction time parameters were calculated for each cycle. Systematic bias was assessed with repeated-measures ANOVA, reliability with intraclass correlation coefficients (ICC), and within-subject variability with coefficients of variation (CVTE). RESULTS: Initiation time (Mean = 0.1065 s) showed the largest systematic bias, requiring the elimination of three cycles to reduce bias, with all other variables requiring, at the most, one. All variables showed acceptable reliability (ICC > 0.70) and within-subject variability (CVTE <20%) with only one cycle after elimination of the first three cycles. CONCLUSIONS: With a three-cycle familiarization period, the PACT was found to be reliable and stable

    Charge transfer electrostatic model of compositional order in perovskite alloys

    Full text link
    We introduce an electrostatic model including charge transfer, which is shown to account for the observed B-site ordering in Pb-based perovskite alloys. The model allows charge transfer between A-sites and is a generalization of Bellaiche and Vanderbilt's purely electrostatic model. The large covalency of Pb^{2+} compared to Ba^{2+} is modeled by an environment dependent effective A-site charge. Monte Carlo simulations of this model successfully reproduce the long range compositional order of both Pb-based and Ba-based complex A(BB^{'}B^{''})O_3 perovskite alloys. The models are also extended to study systems with A-site and B-site doping, such as (Na_{1/2}La_{1/2})(Mg_{1/3}Nb_{2/3})O_3, (Ba_{1-x}La_{x})(Mg_{(1+x)/3}Nb_{(2-x)/3})O_3 and (Pb_{1-x}La_{x})(Mg_{(1+x)/3}Ta_{(2-x)/3})O_3. General trends are reproduced by purely electrostatic interactions, and charge transfer effects indicate that local structural relaxations can tip the balance between different B-site orderings in Pb based materials.Comment: 15 pages, 6 figure
    corecore