109,615 research outputs found
Detection of a single-charge defect in a metal-oxide-semiconductor structure using vertically coupled Al and Si single-electron transistors
An Al-AlO_x-Al single-electron transistor (SET) acting as the gate of a
narrow (~ 100 nm) metal-oxide-semiconductor field-effect transistor (MOSFET)
can induce a vertically aligned Si SET at the Si/SiO_2 interface near the
MOSFET channel conductance threshold. By using such a vertically coupled Al and
Si SET system, we have detected a single-charge defect which is tunnel-coupled
to the Si SET. By solving a simple electrostatic model, the fractions of each
coupling capacitance associated with the defect are extracted. The results
reveal that the defect is not a large puddle or metal island, but its size is
rather small, corresponding to a sphere with a radius less than 1 nm. The small
size of the defect suggests it is most likely a single-charge trap at the
Si/SiO_2 interface. Based on the ratios of the coupling capacitances, the
interface trap is estimated to be about 20 nm away from the Si SET.Comment: 5 pages and 5 figure
Phonon anomalies in pure and underdoped R{1-x}K{x}Fe{2}As{2} (R = Ba, Sr) investigated by Raman light scattering
We present a detailed temperature dependent Raman light scattering study of
optical phonons in Ba{1-x}K{x}Fe{2}As{2} (x ~ 0.28, superconducting Tc ~ 29 K),
Sr{1-x}K{x}Fe{2}As{2} (x ~ 0.15, Tc ~ 29 K) and non-superconducting
BaFe{2}As{2} single crystals. In all samples we observe a strong continuous
narrowing of the Raman-active Fe and As vibrations upon cooling below the
spin-density-wave transition Ts. We attribute this effect to the opening of the
spin-density-wave gap. The electron-phonon linewidths inferred from these data
greatly exceed the predictions of ab-initio density functional calculations
without spin polarization, which may imply that local magnetic moments survive
well above Ts. A first-order structural transition accompanying the
spin-density-wave transition induces discontinuous jumps in the phonon
frequencies. These anomalies are increasingly suppressed for higher potassium
concentrations. We also observe subtle phonon anomalies at the superconducting
transition temperature Tc, with a behavior qualitatively similar to that in the
cuprate superconductors.Comment: 5 pages, 6 figures, accepted versio
Coulomb blockade in a Si channel gated by an Al single-electron transistor
We incorporate an Al-AlO_x-Al single-electron transistor as the gate of a
narrow (~100 nm) metal-oxide-semiconductor field-effect transistor (MOSFET).
Near the MOSFET channel conductance threshold, we observe oscillations in the
conductance associated with Coulomb blockade in the channel, revealing the
formation of a Si single-electron transistor. Abrupt steps present in sweeps of
the Al transistor conductance versus gate voltage are correlated with
single-electron charging events in the Si transistor, and vice versa. Analysis
of these correlations using a simple electrostatic model demonstrates that the
two single-electron transistor islands are closely aligned, with an
inter-island capacitance approximately equal to 1/3 of the total capacitance of
the Si transistor island, indicating that the Si transistor is strongly coupled
to the Al transistor.Comment: 3 pages, 4 figures, 1 table; typos corrected, minor clarifications
added; published in AP
Entanglement between two fermionic atoms inside a cylindrical harmonic trap
We investigate quantum entanglement between two (spin-1/2) fermions inside a
cylindrical harmonic trap, making use of the von Neumann entropy for the
reduced single particle density matrix as the pure state entanglement measure.
We explore the dependence of pair entanglement on the geometry and strength of
the trap and on the strength of the pairing interaction over the complete range
of the effective BCS to BEC crossover. Our result elucidates an interesting
connection between our model system of two fermions and that of two interacting
bosons.Comment: to appear in PR
Binomial coefficients, Catalan numbers and Lucas quotients
Let be an odd prime and let be integers with and . In this paper we determine
mod for ; for example,
where is the Jacobi symbol, and is the Lucas
sequence given by , and for
. As an application, we determine modulo for any integer , where denotes the
Catalan number . We also pose some related conjectures.Comment: 24 pages. Correct few typo
The extraneous eclipses on binary light curves: KIC 5255552, KIC 10091110, and KIC 11495766
Aims. We aim to find more eclipsing multiple systems and obtain their
parameters, thus increasing our understanding of multiple systems.
Methods. The extraneous eclipses on the \textit{kepler} binary light curves
indicating extraneous bodies were searched. The binary light curves were
analyzed using the binary model, and the extraneous eclipses were studied on
their periodicity and shape changes.
Results. Three binaries with extraneous eclipses on the binary light curves
were found and studied based on the \textit{Kepler} observations. The object
KIC 5255552 is an eclipsing triple system with a fast changing inner binary and
an outer companion uncovered by three groups of extraneous eclipses of
d period. The KIC 10091110 is suggested to be a double
eclipsing binary system with several possible extraordinary coincidences: the
two binaries share similar extremely small mass ratios ( and
), similar mean primary densities ( and
), and, most notably, the ratio of the two binaries'
periods is very close to integer 2 (8.5303353/4.2185174 = 2.022). The KIC
11495766 is a probable triple system with a d period binary and
(at least) one non-eclipse companion. Furthermore, very close to it in the
celestial sphere, there is a blended background stellar binary of 8.3404432 d
period. A first list of 25 eclipsing multiple candidates is presented, with the
hope that it will be beneficial for study of eclipsing multiples.Comment: 10 pages, 5 figure
Microscopic Description of Band Structure at Very Extended Shapes in the A ~ 110 Mass Region
Recent experiments have confirmed the existence of rotational bands in the A
\~ 110 mass region with very extended shapes lying between super- and
hyper-deformation. Using the projected shell model, we make a first attempt to
describe quantitatively such a band structure in 108Cd. Excellent agreement is
achieved in the dynamic moment of inertia J(2) calculation. This allows us to
suggest the spin values for the energy levels, which are experimentally
unknown. It is found that at this large deformation, the sharply down-sloping
orbitals in the proton i_{13/2} subshell are responsible for the irregularity
in the experimental J(2), and the wave functions of the observed states have a
dominant component of two-quasiparticles from these orbitals. Measurement of
transition quadrupole moments and g-factors will test these findings, and thus
can provide a deeper understanding of the band structure at very extended
shapes.Comment: 4 pages, 3 eps figures, final version accepted by Phys. Rev. C as a
Rapid Communicatio
A Semi-Blind Source Separation Method for Differential Optical Absorption Spectroscopy of Atmospheric Gas Mixtures
Differential optical absorption spectroscopy (DOAS) is a powerful tool for
detecting and quantifying trace gases in atmospheric chemistry
\cite{Platt_Stutz08}. DOAS spectra consist of a linear combination of complex
multi-peak multi-scale structures. Most DOAS analysis routines in use today are
based on least squares techniques, for example, the approach developed in the
1970s uses polynomial fits to remove a slowly varying background, and known
reference spectra to retrieve the identity and concentrations of reference
gases. An open problem is to identify unknown gases in the fitting residuals
for complex atmospheric mixtures.
In this work, we develop a novel three step semi-blind source separation
method. The first step uses a multi-resolution analysis to remove the
slow-varying and fast-varying components in the DOAS spectral data matrix .
The second step decomposes the preprocessed data in the first step
into a linear combination of the reference spectra plus a remainder, or
, where columns of matrix are known reference spectra,
and the matrix contains the unknown non-negative coefficients that are
proportional to concentration. The second step is realized by a convex
minimization problem ,
where the norm is a hybrid norm (Huber estimator) that helps to
maintain the non-negativity of . The third step performs a blind independent
component analysis of the remainder matrix to extract remnant gas
components. We first illustrate the proposed method in processing a set of DOAS
experimental data by a satisfactory blind extraction of an a-priori unknown
trace gas (ozone) from the remainder matrix. Numerical results also show that
the method can identify multiple trace gases from the residuals.Comment: submitted to Journal of Scientific Computin
Large Deviation Function of the Partially Asymmetric Exclusion Process
The large deviation function obtained recently by Derrida and Lebowitz for
the totally asymmetric exclusion process is generalized to the partially
asymmetric case in the scaling limit. The asymmetry parameter rescales the
scaling variable in a simple way. The finite-size corrections to the universal
scaling function and the universal cumulant ratio are also obtained to the
leading order.Comment: 10 pages, 2 eps figures, minor changes, submitted to PR
- …
