66,024 research outputs found

    Mesoscopic Resistance Fluctuations in Cobalt Nanoparticles

    Full text link
    We present measurements of mesoscopic resistance fluctuations in cobalt nanoparticles and study how the fluctuations with bias voltage, bias fingerprints, respond to magnetization reversal processes. Bias fingerprints rearrange when domains are nucleated or annihilated. The domain-wall causes an electron wavefunction phase-shift of 5π\approx 5\pi. The phase-shift is not caused by the Aharonov-Bohm effect; we explain how it arises from the mistracking effect, where electron spins lag in orientation with respect to the moments inside the domain-wall. Dephasing time in Co at 0.03K0.03K is short, τϕps\tau_\phi\sim ps, which we attribute to the strong magnetocrystalline anisotropy.Comment: 5 pages 3 figs colou

    Microwave-Induced Dephasing in One-Dimensional Metal Wires

    Full text link
    We report on the effect of monochromatic microwave (MW) radiation on the weak localization corrections to the conductivity of quasi-one-dimensional (1D) silver wires. Due to the improved electron cooling in the wires, the MW-induced dephasing was observed without a concomitant overheating of electrons over wide ranges of the MW power PMWP_{MW} and frequency ff. The observed dependences of the conductivity and MW-induced dephasing rate on PMWP_{MW} and ff are in agreement with the theory by Altshuler, Aronov, and Khmelnitsky \cite{Alt81}. Our results suggest that in the low-temperature experiments with 1D wires, saturation of the temperature dependence of the dephasing time can be caused by an MW electromagnetic noise with a sub-pW power.Comment: 4 pages with 4 figures, paper revised, accepted by Phys Rev Let

    Morphological evolution of a 3D CME cloud reconstructed from three viewpoints

    Full text link
    The propagation properties of coronal mass ejections (CMEs) are crucial to predict its geomagnetic effect. A newly developed three dimensional (3D) mask fitting reconstruction method using coronagraph images from three viewpoints has been described and applied to the CME ejected on August 7, 2010. The CME's 3D localisation, real shape and morphological evolution are presented. Due to its interaction with the ambient solar wind, the morphology of this CME changed significantly in the early phase of evolution. Two hours after its initiation, it was expanding almost self-similarly. CME's 3D localisation is quite helpful to link remote sensing observations to in situ measurements. The investigated CME was propagating to Venus with its flank just touching STEREO B. Its corresponding ICME in the interplanetary space shows a possible signature of a magnetic cloud with a preceding shock in VEX observations, while from STEREO B only a shock is observed. We have calculated three principle axes for the reconstructed 3D CME cloud. The orientation of the major axis is in general consistent with the orientation of a filament (polarity inversion line) observed by SDO/AIA and SDO/HMI. The flux rope axis derived by the MVA analysis from VEX indicates a radial-directed axis orientation. It might be that locally only the leg of the flux rope passed through VEX. The height and speed profiles from the Sun to Venus are obtained. We find that the CME speed possibly had been adjusted to the speed of the ambient solar wind flow after leaving COR2 field of view and before arriving Venus. A southward deflection of the CME from the source region is found from the trajectory of the CME geometric center. We attribute it to the influence of the coronal hole where the fast solar wind emanated from.Comment: ApJ, accepte

    Strong Pinning Enhancement in MgB2 Using Very Small Dy2O3 Additions

    Full text link
    0.5 to 5.0 wt.% Dy2O3 was in-situ reacted with Mg + B to form pinned MgB2. While Tc remained largely unchanged, Jc was strongly enhanced. The best sample (only 0.5 wt.% Dy2O3) had a Jc of 6.5 x 10^5 A/cm^2 at 6K, 1T and 3.5 x 10^5 A/cm^2 at 20K, 1T, around a factor of 4 higher compared to the pure sample, and equivalent to hot-pressed or nano-Si added MgB2 at below 1T. Even distributions of nano-scale precipitates of DyB4 and MgO were observed within the grains. The room temperature resistivity decreased with Dy2O3 indicative of improved grain connectivity.Comment: 13 pages, 4 figures and 1 tabl

    Universal quantized spin-Hall conductance fluctuation in graphene

    Full text link
    We report a theoretical investigation of quantized spin-Hall conductance fluctuation of graphene devices in the diffusive regime. Two graphene models that exhibit quantized spin-Hall effect (QSHE) are analyzed. Model-I is with unitary symmetry under an external magnetic field B0B\ne 0 but with zero spin-orbit interaction, tSO=0t_{SO}=0. Model-II is with symplectic symmetry where B=0 but tSO0t_{SO} \ne 0. Extensive numerical calculations indicate that the two models have exactly the same universal QSHE conductance fluctuation value 0.285e/4π0.285 e/4\pi regardless of the symmetry. Qualitatively different from the conventional charge and spin universal conductance distributions, in the presence of edge states the spin-Hall conductance shows an one-sided log-normal distribution rather than a Gaussian distribution. Our results strongly suggest that the quantized spin-Hall conductance fluctuation belongs to a new universality class

    Trellis decoding complexity of linear block codes

    Get PDF
    In this partially tutorial paper, we examine minimal trellis representations of linear block codes and analyze several measures of trellis complexity: maximum state and edge dimensions, total span length, and total vertices, edges and mergers. We obtain bounds on these complexities as extensions of well-known dimension/length profile (DLP) bounds. Codes meeting these bounds minimize all the complexity measures simultaneously; conversely, a code attaining the bound for total span length, vertices, or edges, must likewise attain it for all the others. We define a notion of “uniform” optimality that embraces different domains of optimization, such as different permutations of a code or different codes with the same parameters, and we give examples of uniformly optimal codes and permutations. We also give some conditions that identify certain cases when no code or permutation can meet the bounds. In addition to DLP-based bounds, we derive new inequalities relating one complexity measure to another, which can be used in conjunction with known bounds on one measure to imply bounds on the others. As an application, we infer new bounds on maximum state and edge complexity and on total vertices and edges from bounds on span lengths

    Improved Current Densities in MgB2 By Liquid-Assisted Sintering

    Full text link
    Polycrystalline MgB2 samples with GaN additions were prepared by reaction of Mg, B, and GaN powders. The presence of Ga leads to a low melting eutectic phase which allowed liquid phase sintering and produces plate-like grains. For low-level GaN additions (5% at. % or less), the critical transition temperature, Tc, remained unchanged and in 1T magnetic field, the critical current density, Jc was enhanced by a factor of 2 and 10, for temperatures of \~5K and 20K, respectively. The values obtained are approaching those of hot isostatically pressed samples.Comment: 12 pages, 1 table, 4 figures, accepted in Applied Physics Letter
    corecore