161,519 research outputs found

    X-ray Polarization Signatures of Compton Scattering in Magnetic Cataclysmic Variables

    Full text link
    Compton scattering within the accretion column of magnetic cataclysmic variables (mCVs) can induce a net polarization in the X-ray emission. We investigate this process using Monte Carlo simulations and find that significant polarization can arise as a result of the stratified flow structure in the shock-ionized column. We find that the degree of linear polarization can reach levels up to ~8% for systems with high accretion rates and low white-dwarf masses, when viewed at large inclination angles with respect to the accretion column axis. These levels are substantially higher than previously predicted estimates using an accretion column model with uniform density and temperature. We also find that for systems with a relatively low-mass white dwarf accreting at a high accretion rate, the polarization properties may be insensitive to the magnetic field, since most of the scattering occurs at the base of the accretion column where the density structure is determined mainly by bremsstrahlung cooling instead of cyclotron cooling.Comment: 7 pages, 8 figures, accepted by MNRA

    Lifetime Difference and Endpoint effect in the Inclusive Bottom Hadron Decays

    Full text link
    The lifetime differences of bottom hadrons are known to be properly explained within the framework of heavy quark effective field theory(HQEFT) of QCD via the inverse expansion of the dressed heavy quark mass. In general, the spectrum around the endpoint region is not well behaved due to the invalidity of 1/mQ1/m_Q expansion near the endpoint. The curve fitting method is adopted to treat the endpoint behavior. It turns out that the endpoint effects are truly small and the explanation on the lifetime differences in the HQEFT of QCD is then well justified. The inclusion of the endpoint effects makes the prediction on the lifetime differences and the extraction on the CKM matrix element Vcb|V_{cb}| more reliable.Comment: 11 pages, Revtex, 10 figures, 6 tables, published versio

    The extraneous eclipses on binary light curves: KIC 5255552, KIC 10091110, and KIC 11495766

    Full text link
    Aims. We aim to find more eclipsing multiple systems and obtain their parameters, thus increasing our understanding of multiple systems. Methods. The extraneous eclipses on the \textit{kepler} binary light curves indicating extraneous bodies were searched. The binary light curves were analyzed using the binary model, and the extraneous eclipses were studied on their periodicity and shape changes. Results. Three binaries with extraneous eclipses on the binary light curves were found and studied based on the \textit{Kepler} observations. The object KIC 5255552 is an eclipsing triple system with a fast changing inner binary and an outer companion uncovered by three groups of extraneous eclipses of 862.1(±0.1)862.1(\pm0.1) d period. The KIC 10091110 is suggested to be a double eclipsing binary system with several possible extraordinary coincidences: the two binaries share similar extremely small mass ratios (0.060(13)0.060(13) and 0.0564(18)0.0564(18)), similar mean primary densities (0.3264(42)  ρ0.3264(42)\;\rho_\odot and 0.3019(28)  ρ0.3019(28)\;\rho_\odot), and, most notably, the ratio of the two binaries' periods is very close to integer 2 (8.5303353/4.2185174 = 2.022). The KIC 11495766 is a probable triple system with a 120.73\sim120.73 d period binary and (at least) one non-eclipse companion. Furthermore, very close to it in the celestial sphere, there is a blended background stellar binary of 8.3404432 d period. A first list of 25 eclipsing multiple candidates is presented, with the hope that it will be beneficial for study of eclipsing multiples.Comment: 10 pages, 5 figure

    Quasi-local mass in the covariant Newtonian space-time

    Full text link
    In general relativity, quasi-local energy-momentum expressions have been constructed from various formulae. However, Newtonian theory of gravity gives a well known and an unique quasi-local mass expression (surface integration). Since geometrical formulation of Newtonian gravity has been established in the covariant Newtonian space-time, it provides a covariant approximation from relativistic to Newtonian theories. By using this approximation, we calculate Komar integral, Brown-York quasi-local energy and Dougan-Mason quasi-local mass in the covariant Newtonian space-time. It turns out that Komar integral naturally gives the Newtonian quasi-local mass expression, however, further conditions (spherical symmetry) need to be made for Brown-York and Dougan-Mason expressions.Comment: Submit to Class. Quantum Gra

    Nonlinear Band Structure in Bose Einstein Condensates: The Nonlinear Schr\"odinger Equation with a Kronig-Penney Potential

    Full text link
    All Bloch states of the mean field of a Bose-Einstein condensate in the presence of a one dimensional lattice of impurities are presented in closed analytic form. The band structure is investigated by analyzing the stationary states of the nonlinear Schr\"odinger, or Gross-Pitaevskii, equation for both repulsive and attractive condensates. The appearance of swallowtails in the bands is examined and interpreted in terms of the condensates superfluid properties. The nonlinear stability properties of the Bloch states are described and the stable regions of the bands and swallowtails are mapped out. We find that the Kronig-Penney potential has the same properties as a sinusoidal potential; Bose-Einstein condensates are trapped in sinusoidal optical lattices. The Kronig-Penney potential has the advantage of being analytically tractable, unlike the sinusoidal potential, and, therefore, serves as a good model for experimental phenomena.Comment: Version 2. Fixed typos, added referenc

    Real-time monitoring of proton exchange membrane fuel cell stack failure

    Get PDF
    Uneven pressure drops in a 75-cell 9.5-kWe proton exchange membrane fuel cell stack with a U-shaped flow configuration have been shown to cause localised flooding. Condensed water then leads to localised cell heating, resulting in reduced membrane durability. Upon purging of the anode manifold, the resulting mechanical strain on the membrane can lead to the formation of a pin-hole/membrane crack and a rapid decrease in open circuit voltage due to gas crossover. This failure has the potential to cascade to neighbouring cells due to the bipolar plate coupling and the current density heterogeneities arising from the pin-hole/membrane crack. Reintroduction of hydrogen after failure results in cell voltage loss propagating from the pin-hole/membrane crack location due to reactant crossover from the anode to the cathode, given that the anode pressure is higher than the cathode pressure. Through these observations, it is recommended that purging is avoided when the onset of flooding is observed to prevent irreparable damage to the stack
    corecore