84,151 research outputs found
Photoproduction of and in the reaction \gamma \lowercase{p} \to K^+ \Lambda \pi^0 at Jefferson Lab
The search for missing nucleon resonances using coupled channel analysis has
mostly been concentrated on and channels, while the contributions
of and channels have not been investigated thoroughly mostly due
to the lack of data. With an integrated luminosity of about 75 , the
photoproduction data using a proton target recently collected by the CLAS
Collaboration at Jefferson Lab with a photon energy range of 1.5-3.8 GeV
provided large statistics for the study of light hyperon photoproduction
through exclusive reactions. The reaction has
been investigated. Preliminary results of the and
cross sections are not negligible compared with the
channels. The invariant mass spectrum is dominated by the
signal and no significant structure was found around the
region.Comment: 4 pages, 3 figures, to be publised on the NSTAR05 proceeding
Multilevel quantum Otto heat engines with identical particles
A quantum Otto heat engine is studied with multilevel identical particles
trapped in one-dimensional box potential as working substance. The symmetrical
wave function for Bosons and the anti-symmetrical wave function for Fermions
are considered. In two-particle case, we focus on the ratios of ()
to , where and are the work done by two Bosons and Fermions
respectively, and is the work output of a single particle under the same
conditions. Due to the symmetric of the wave functions, the ratios are not
equal to . Three different regimes, low temperature regime, high temperature
regime, and intermediate temperature regime, are analyzed, and the effects of
energy level number and the differences between the two baths are calculated.
In the multiparticle case, we calculate the ratios of to , where
can be seen as the average work done by a single particle in
multiparticle heat engine.
For other working substances whose energy spectrum have the form of , the results are similar. For the case , two different
conclusions are obtained
Double-dot charge transport in Si single electron/hole transistors
We studied transport through ultra-small Si quantum dot transistors
fabricated from silicon-on-insulator wafers. At high temperatures, 4K<T<100K,
the devices show single-electron or single-hole transport through the
lithographically defined dot. At T<4K, current through the devices is
characterized by multidot transport. From the analysis of the transport in
samples with double-dot characteristics, we conclude that extra dots are formed
inside the thermally grown gate oxide which surrounds the lithographically
defined dot.Comment: 4 pages, 5 figures, to appear in Appl. Phys. Let
Radio light curves during the passage of cloud G2 near Sgr A*
We calculate radio light curves produced by the bow shock that is likely to
form in front of the G2 cloud when it penetrates the accretion disk of Sgr A*.
The shock acceleration of the radio-emitting electrons is captured
self-consistently by means of first-principles particle-in-cell simulations. We
show that the radio luminosity is expected to reach maximum in early 2013,
roughly a month after the bow shock crosses the orbit pericenter. We estimate
the peak radio flux at 1.4 GHz to be 1.4 - 22 Jy depending on the assumed orbit
orientation and parameters. We show that the most promising frequencies for
radio observations are in the 0.1<nu<1 GHz range, for which the bow shock
emission will be much stronger than the intrinsic radio flux for all the models
considered.Comment: 15 pages, 10 figures, accepted for publication in MNRA
Spitzer's Identity and the Algebraic Birkhoff Decomposition in pQFT
In this article we continue to explore the notion of Rota-Baxter algebras in
the context of the Hopf algebraic approach to renormalization theory in
perturbative quantum field theory. We show in very simple algebraic terms that
the solutions of the recursively defined formulae for the Birkhoff
factorization of regularized Hopf algebra characters, i.e. Feynman rules,
naturally give a non-commutative generalization of the well-known Spitzer's
identity. The underlying abstract algebraic structure is analyzed in terms of
complete filtered Rota-Baxter algebras.Comment: 19 pages, 2 figure
- …
