315,281 research outputs found
Engineering a Conformant Probabilistic Planner
We present a partial-order, conformant, probabilistic planner, Probapop which
competed in the blind track of the Probabilistic Planning Competition in IPC-4.
We explain how we adapt distance based heuristics for use with probabilistic
domains. Probapop also incorporates heuristics based on probability of success.
We explain the successes and difficulties encountered during the design and
implementation of Probapop
The Precise Formula in a Sine Function Form of the norm of the Amplitude and the Necessary and Sufficient Phase Condition for Any Quantum Algorithm with Arbitrary Phase Rotations
In this paper we derived the precise formula in a sine function form of the
norm of the amplitude in the desired state, and by means of he precise formula
we presented the necessary and sufficient phase condition for any quantum
algorithm with arbitrary phase rotations. We also showed that the phase
condition: identical rotation angles, is a sufficient but not a necessary phase
condition.Comment: 16 pages. Modified some English sentences and some proofs. Removed a
table. Corrected the formula for kol on page 10. No figure
Template epitaxial growth of thermoelectric Bi/BiSb superlattice nanowires by charge-controlled pulse electrodeposition
© The Electrochemical Society, Inc. 2009. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in The Journal of The Electrochemical Society, 156(9), 2009.Bi/BiSb superlattice nanowires (SLNWs) with a controllable and very small bilayer thickness and a sharp segment interface were grown by adopting a charge-controlled pulse electrodeposition. The deposition parameters were optimized to ensure an epitaxial growth of the SLNWs with a preferential orientation. The segment length and bilayer thickness of the SLNWs can be controlled simply by changing the modulating time, and the consistency of the segment length can be well maintained by our approach. The Bravais law in the electrodeposited nanowires is verified by the SLNW structure. The current–voltage measurement shows that the SLNWs have good electrical conductance, particularly those with a smaller bilayer thickness. The Bi/BiSb SLNWs might have excellent thermoelectric performances.National Natural Science Foundation
of China and the National
Major Project of Fundamental Research for Nanomaterials and
Nanostructures
Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeOFFeAs
A series of layered CeOFFeAs compounds with x=0 to 0.20 are
synthesized by solid state reaction method. Similar to the LaOFeAs, the pure
CeOFeAs shows a strong resistivity anomaly near 145 K, which was ascribed to
the spin-density-wave instability. F-doping suppresses this instability and
leads to the superconducting ground state. Most surprisingly, the
superconducting transition temperature could reach as high as 41 K. The very
high superconducting transition temperature strongly challenges the classic BCS
theory based on the electron-phonon interaction. The very closeness of the
superconducting phase to the spin-density-wave instability suggests that the
magnetic fluctuations play a key role in the superconducting paring mechanism.
The study also reveals that the Ce 4f electrons form local moments and ordered
antiferromagnetically below 4 K, which could coexist with superconductivity.Comment: 4 pages, 5 figure
Thermal Hall Conductivity as a Probe of Gap Structure in Multi-band Superconductors: The Case of
The sign and profile of the thermal Hall conductivity gives
important insights into the gap structure of multi-band superconductors. With
this perspective, we have investigated and the thermal
conductivity in which display large
peak anomalies in the superconducting state. The anomalies imply that a large
hole-like quasiparticle (qp) population exists below the critical temperature
. We show that the qp mean-free-path inferred from
reproduces the observed anomaly in , providing a consistent
estimate of a large qp population. Further, we demonstrate that the hole-like
signal is consistent with a theoretical scenario where despite potentially
large gap variations on the electron pockets, the minimal homogeneous gap of
the superconducting phase resides at a hole pocket. Implications for probing
the gap structure in the broader class of pnictide superconductors are
discussed.Comment: 5 pages, 4 figures. Orientation significantly updated from previous
(0811.4668v1) reflecting new theoretical understanding of experimental
results and physical implications. Introduction, discussion, and figures
updated including additional figure for model calculatio
A General SU(2) Formulation for Quantum Searching with Certainty
A general quantum search algorithm with arbitrary unitary transformations and
an arbitrary initial state is considered in this work. To serach a marked state
with certainty, we have derived, using an SU(2) representation: (1) the
matching condition relating the phase rotations in the algorithm, (2) a concise
formula for evaluating the required number of iterations for the search, and
(3) the final state after the search, with a phase angle in its amplitude of
unity modulus. Moreover, the optimal choices and modifications of the phase
angles in the Grover kernel is also studied.Comment: 8 pages, 2 figure
Gravitational lensing effects on sub-millimetre galaxy counts
We study the effects on the number counts of sub-millimetre galaxies due to
gravitational lensing. We explore the effects on the magnification cross
section due to halo density profiles, ellipticity and cosmological parameter
(the power-spectrum normalisation ). We show that the ellipticity
does not strongly affect the magnification cross section in gravitational
lensing while the halo radial profiles do. Since the baryonic cooling effect is
stronger in galaxies than clusters, galactic haloes are more concentrated. In
light of this, a new scenario of two halo population model is explored where
galaxies are modeled as a singular isothermal sphere profile and clusters as a
Navarro, Frenk and White (NFW) profile. We find the transition mass between the
two has modest effects on the lensing probability. The cosmological parameter
alters the abundance of haloes and therefore affects our results.
Compared with other methods, our model is simpler and more realistic. The
conclusions of previous works is confirm that gravitational lensing is a
natural explanation for the number count excess at the bright end.Comment: 10 pages, 10 figures, accepted by MNRA
X-ray and EUV spectroscopy of various astrophysical and laboratory plasmas -- Collisional, photoionization and charge-exchange plasmas
Several laboratory facilities were used to benchmark theoretical spectral
models those extensively used by astronomical communities. However there are
still many differences between astrophysical environments and laboratory
miniatures that can be archived. Here we setup a spectral analysis system for
astrophysical and laboratory (SASAL) plasmas to make a bridge between them, and
investigate the effects from non-thermal electrons, contribution from
metastable level-population on level populations and charge stage distribution
for coronal-like, photoionized, and geocoronal plasmas. Test applications to
laboratory measurement (i.e. EBIT plasma) and astrophysical observation (i.e.
Comet, Cygnus X-3) are presented. Time evolution of charge stage and level
population are also explored for collisional and photoionized plasmas.Comment: 11 Figures, 3 Tables, Accepted by ApJ on Jan. 23, 2014. Astrophysical
Journal 201
- …
