27,349 research outputs found
Fixed-point elimination in the intuitionistic propositional calculus
It is a consequence of existing literature that least and greatest
fixed-points of monotone polynomials on Heyting algebras-that is, the algebraic
models of the Intuitionistic Propositional Calculus-always exist, even when
these algebras are not complete as lattices. The reason is that these extremal
fixed-points are definable by formulas of the IPC. Consequently, the
-calculus based on intuitionistic logic is trivial, every -formula
being equivalent to a fixed-point free formula. We give in this paper an
axiomatization of least and greatest fixed-points of formulas, and an algorithm
to compute a fixed-point free formula equivalent to a given -formula. The
axiomatization of the greatest fixed-point is simple. The axiomatization of the
least fixed-point is more complex, in particular every monotone formula
converges to its least fixed-point by Kleene's iteration in a finite number of
steps, but there is no uniform upper bound on the number of iterations. We
extract, out of the algorithm, upper bounds for such n, depending on the size
of the formula. For some formulas, we show that these upper bounds are
polynomial and optimal
Kondo Insulator to Semimetal Transformation Tuned by Spin-Orbit Coupling
Recent theoretical studies of topologically nontrivial electronic states in
Kondo insulators have pointed to the importance of spin-orbit coupling (SOC)
for stabilizing these states. However, systematic experimental studies that
tune the SOC parameter in Kondo insulators remain elusive.
The main reason is that variations of (chemical) pressure or doping strongly
influence the Kondo coupling and the chemical potential --
both essential parameters determining the ground state of the material -- and
thus possible tuning effects have remained unnoticed. Here
we present the successful growth of the substitution series
CeBi(PtPd) () of the archetypal
(noncentrosymmetric) Kondo insulator CeBiPt. The Pt-Pd substitution
is isostructural, isoelectronic, and isosize, and therefore likely to leave
and essentially unchanged. By contrast, the large mass
difference between the element Pt and the element Pd leads to a large
difference in , which thus is the dominating tuning
parameter in the series. Surprisingly, with increasing (decreasing
), we observe a Kondo insulator to semimetal transition,
demonstrating an unprecedented drastic influence of the SOC. The fully
substituted end compound CeBiPd shows thermodynamic signatures of a
recently predicted Weyl-Kondo semimetal.Comment: 6 pages, 5 figures plus Supplemental Materia
Surface effects on the Mott-Hubbard transition in archetypal VO
We present an experimental and theoretical study exploring surface effects on
the evolution of the metal-insulator transition in the model Mott-Hubbard
compound Cr-doped VO. We find a microscopic domain formation that is
clearly affected by the surface crystallographic orientation. Using scanning
photoelectron microscopy and X-ray diffraction, we find that surface defects
act as nucleation centers for the formation of domains at the
temperature-induced isostructural transition and favor the formation of
microscopic metallic regions. A density functional theory plus dynamical mean
field theory study of different surface terminations shows that the surface
reconstruction with excess vanadyl cations leads to doped, and hence more
metallic surface states, explaining our experimental observations.Comment: 5 pages, 4 figure
Unification Theory of Angular Magnetoresistance Oscillations in Quasi-One-Dimensional Conductors
We present a unification theory of angular magnetoresistance oscillations,
experimentally observed in quasi-one-dimensional organic conductors, by solving
the Boltzmann kinetic equation in the extended Brillouin zone. We find that, at
commensurate directions of a magnetic field, resistivity exhibits strong
minima. In two limiting cases, our general solution reduces to the results,
previously obtained for the Lebed Magic Angles and Lee-Naughton-Lebed
oscillations. We demonstrate that our theoretical results are in good
qualitative and quantitative agreement with the existing measurements of
resistivity in (TMTSF)ClO conductor.Comment: 6 pages, 2 figure
Non-Fermi Liquids in the Extended Hubbard Model
I summarize recent work on non-Fermi liquids within certain generalized
Anderson impurity model as well as in the large dimensionality () limit of
the two-band extended Hubbard model. The competition between local charge and
spin fluctuations leads either to a Fermi liquid with renormalized
quasiparticle excitations, or to non-Fermi liquids with spin-charge separation.
These results provide new insights into the phenomenological similarities and
differences between different correlated metals. While presenting these
results, I outline a general strategy of local approach to non-Fermi liquids in
correlated electron systems.Comment: 30 pages, REVTEX, 14 figures included. To appear in ``Non Fermi
Liquid Physics'', J. Phys: Cond. Matt. (1997
Early reionization by decaying particles in the light of three year WMAP data
We study the reionization histories where ionizing UV photons are emitted
from decaying particles, in addition to usual contributions from stars and
quasars, taking account of the fact that the universe is not fully ionized
until z = 6 as observed by Sloan Digital Sky Survey. Likelihood analysis of the
three-year data from the WMAP (Wilkinson Microwave Anisotropy Probe) severely
constrains the decaying particle scenario.In particular, the decaying particle
with relatively short lifetime is not favored by the polarization data.Comment: 9 pages, 11 figure
Inversion symmetry breaking induced triply degenerate points in orderly arranged PtSeTe family materials
paths exactly with symmetry allow to find triply degenerate
points (TDPs) in band structures. The paths that host the type-II Dirac points
in PtSe family materials also have the spatial symmetry. However,
due to Kramers degeneracy (the systems have both inversion symmetry and time
reversal symmetry), the crossing points in them are Dirac ones. In this work,
based on symmetry analysis, first-principles calculations, and
method, we predict that PtSe family materials should undergo topological
transitions if the inversion symmetry is broken, \emph{i.e.} the Dirac fermions
in PtSe family materials split into TDPs in PtSeTe family materials (PtSSe,
PtSeTe, and PdSeTe) with orderly arranged S/Se (Se/Te). It is different from
the case in high-energy physics that breaking inversion symmetry leads to
the splitting of Dirac fermion into Weyl fermions. We also address a possible
method to achieve the orderly arranged in PtSeTe family materials in
experiments. Our study provides a real example that Dirac points transform into
TDPs, and is helpful to investigate the topological transition between Dirac
fermions and TDP fermions
Andreev Reflection and Spin Injection into and wave Superconductors
We study the effect of spin injection into and wave superconductors,
with an emphasis on the interplay between boundary and bulk spin transport
properties. The quantities of interest include the amount of non-equilibrium
magnetization (), as well as the induced spin-dependent current () and
boundary voltage (). In general, the Andreev reflection makes each of the
three quantities depend on a different combination of the boundary and bulk
contributions. The situation simplifies either for half-metallic ferromagnets
or in the strong barrier limit, where both and depend solely on the
bulk spin transport/relaxation properties. The implications of our results for
the on-going spin injection experiments in high cuprates are discussed.Comment: 4 pages, REVTEX, 1 figure included; typos correcte
Spin Injection into a Luttinger Liquid
We study the effect of spin injection into a Luttinger liquid. The
spin-injection-detection setup of Johnson and Silsbee is considered; here spins
injected into the Luttinger liquid induce, across an interface with a
ferromagnetic metal, either a spin-dependent current () or a
spin-dependent boundary voltage (). We find that the spin-charge
separation nature of the Luttinger liquid affects and in a very
different fashion. In particular, in the Ohmic regime, depends on the
spin transport properties of the Luttinger liquid in essentially the same way
as it would in the case of a Fermi liquid. The implications of our results for
the spin-injection-detection experiments in the high cuprates are
discussed.Comment: 4 pages, REVTEX, 2 figures. Minor changes and corrections to typos.
To appear in Phys. Rev. Let
A Tale of Two Animats: What does it take to have goals?
What does it take for a system, biological or not, to have goals? Here, this
question is approached in the context of in silico artificial evolution. By
examining the informational and causal properties of artificial organisms
('animats') controlled by small, adaptive neural networks (Markov Brains), this
essay discusses necessary requirements for intrinsic information, autonomy, and
meaning. The focus lies on comparing two types of Markov Brains that evolved in
the same simple environment: one with purely feedforward connections between
its elements, the other with an integrated set of elements that causally
constrain each other. While both types of brains 'process' information about
their environment and are equally fit, only the integrated one forms a causally
autonomous entity above a background of external influences. This suggests that
to assess whether goals are meaningful for a system itself, it is important to
understand what the system is, rather than what it does.Comment: This article is a contribution to the FQXi 2016-2017 essay contest
"Wandering Towards a Goal
- …
