61,520 research outputs found
On stochasticity in nearly-elastic systems
Nearly-elastic model systems with one or two degrees of freedom are
considered: the system is undergoing a small loss of energy in each collision
with the "wall". We show that instabilities in this purely deterministic system
lead to stochasticity of its long-time behavior. Various ways to give a
rigorous meaning to the last statement are considered. All of them, if
applicable, lead to the same stochasticity which is described explicitly. So
that the stochasticity of the long-time behavior is an intrinsic property of
the deterministic systems.Comment: 35 pages, 12 figures, already online at Stochastics and Dynamic
Local electronic structures on the superconducting interface
Motivated by the recent discovery of superconductivity on the heterointerface
, we theoretically investigate its local electronic
structures near an impurity considering the influence of Rashba-type spin-orbit
interaction (RSOI) originated in the lack of inversion symmetry. We find that
local density of states near an impurity exhibits the in-gap resonance peaks
due to the quasiparticle scattering on the Fermi surface with the reversal sign
of the pairing gap caused by the mixed singlet and RSOI-induced triplet
superconducting state. We also analyze the evolutions of density of states and
local density of states with the weight of triplet pairing component determined
by the strength of RSOI, which will be widely observed in thin films of
superconductors with surface or interface-induced RSOI, or various
noncentrosymmetric superconductors in terms of point contact tunneling and
scanning tunneling microscopy, and thus reveal an admixture of the spin singlet
and RSOI-induced triplet superconducting states.Comment: Phys. Rev. B 81, 144504 (2010)
Entangled granular media
We study the geometrically induced cohesion of ensembles of granular
"u-particles" which mechanically entangle through particle interpenetration. We
vary the length-to-width ratio of the u-particles and form them into
free-standing vertical columns. In laboratory experiment we monitor the
response of the columns to sinusoidal vibration (frequency , peak
acceleration ). Column collapse occurs in a characteristic time,
, which follows the relation .
resembles an activation energy and is maximal at intermediate .
Simulation reveals that optimal strength results from competition between
packing and entanglement.Comment: 4 pages, 5 figure
Fluctuations of the vacuum energy density of quantum fields in curved spacetime via generalized zeta functions
For quantum fields on a curved spacetime with an Euclidean section, we derive
a general expression for the stress energy tensor two-point function in terms
of the effective action. The renormalized two-point function is given in terms
of the second variation of the Mellin transform of the trace of the heat kernel
for the quantum fields. For systems for which a spectral decomposition of the
wave opearator is possible, we give an exact expression for this two-point
function. Explicit examples of the variance to the mean ratio of the vacuum energy density of a
massless scalar field are computed for the spatial topologies of and , with results of , and
respectively. The large variance signifies the importance
of quantum fluctuations and has important implications for the validity of
semiclassical gravity theories at sub-Planckian scales. The method presented
here can facilitate the calculation of stress-energy fluctuations for quantum
fields useful for the analysis of fluctuation effects and critical phenomena in
problems ranging from atom optics and mesoscopic physics to early universe and
black hole physics.Comment: Uses revte
Nature of magnetism in CaCoO
We find using LSDA+U band structure calculations that the novel
one-dimensional cobaltate CaCoO is not a ferromagnetic half-metal
but a Mott insulator. Both the octahedral and the trigonal Co ions are formally
trivalent, with the octahedral being in the low-spin and the trigonal in the
high-spin state. The inclusion of the spin-orbit coupling leads to the
occupation of the minority-spin orbital for the unusually coordinated
trigonal Co, producing a giant orbital moment (1.57 ). It also results
in an anomalously large magnetocrystalline anisotropy (of order 70 meV),
elucidating why the magnetism is highly Ising-like. The role of the oxygen
holes, carrying an induced magnetic moment of 0.13 per oxygen, for
the exchange interactions is discussed.Comment: 5 pages, 4 figures, and 1 tabl
Insulating state and the importance of the spin-orbit coupling in CaCoRhO
We have carried out a comparative theoretical study of the electronic
structure of the novel one-dimensional CaCoRhO and CaFeRhO
systems. The insulating antiferromagnetic state for the CaFeRhO can be
well explained by band structure calculations with the closed shell high-spin
(Fe) and low-spin (Rh) configurations. We
found for the CaCoRhO that the Co has a strong tendency to be
(Co) rather than (Co), and that there is an orbital
degeneracy in the local Co electronic structure. We argue that it is the
spin-orbit coupling which will lift this degeneracy thereby enabling local spin
density approximation + Hubbard U (LSDA+U) band structure calculations to
generate the band gap. We predict that the orbital contribution to the magnetic
moment in CaCoRhO is substantial, i.e. significantly larger than 1
per formula unit. Moreover, we propose a model for the contrasting
intra-chain magnetism in both materials.Comment: 7 pages, 4 figures, and 1 tabl
Quantum Field Effects on Cosmological Phase Transition in Anisotropic Spacetimes
The one-loop renormalized effective potentials for the massive
theory on the spatially homogeneous models of Bianchi type I and
Kantowski-Sachs type are evaluated. It is used to see how the quantum field
affects the cosmological phase transition in the anisotropic spacetimes. For
reasons of the mathematical technique it is assumed that the spacetimes are
slowly varying or have specially metric forms. We obtain the analytic results
and present detailed discussions about the quantum field corrections to the
symmetry breaking or symmetry restoration in the model spacetimes.Comment: Latex 17 page
Novel method for refinement of retained austenite in micro/nano-structured bainitic steels
A comparative study was conducted to assess the effects of two different heat treatments on the amount and morphology of the retained austenite in a micro/nano-structured bainitic steel. The heat treatments used in this work were two-stage bainitic transformation and bainitic-partitioning transformation. Both methods resulted in the generation of a multi-phase microstructure containing nanoscale bainitic ferrite, and/or fresh martensitic phases and much finer retained austenite. Both heat treatments were verified to be effective in refining the retained austenite in micro/nano-structured bainite and increasing the hardness. However, the bainitic transformation followed by partitioning cycle was proved to be a more viable approach than the two-stage bainitic transformation due to much shorter processing time, i.e. ∼2 h compared to ∼4 day, respectively
Trapping effects on inflation
We develop a Lagrangian approach based on the influence functional method so
as to derive self-consistently the Langevin equation for the inflaton field in
the presence of trapping points along the inflaton trajectory. The Langevin
equation exhibits the backreaction and the fluctuation-dissipation relation of
the trapping. The fluctuation is induced by a multiplicative colored noise that
can be identified as the the particle number density fluctuations and the
dissipation is a new effect that may play a role in the trapping with a strong
coupling. In the weak coupling regime, we calculate the power spectrum of the
noise-driven inflaton fluctuations for a single trapping point and studied its
variation with the trapping location. We also consider a case with closely
spaced trapping points and find that the resulting power spectrum is blue.Comment: 13 pages, 2 figure
Inflationary Models Driven by Adiabatic Matter Creation
The flat inflationary dust universe with matter creation proposed by
Prigogine and coworkers is generalized and its dynamical properties are
reexamined. It is shown that the starting point of these models depends
critically on a dimensionless parameter , closely related to the matter
creation rate . For bigger or smaller than unity flat universes
can emerge, respectively, either like a Big-Bang FRW singularity or as a
Minkowski space-time at . The case corresponds to a de
Sitter-type solution, a fixed point in the phase diagram of the system,
supported by the matter creation process. The curvature effects have also been
investigated. The inflating de Sitter is a universal attractor for all
expanding solutions regardless of the initial conditions as well as of the
curvature parameter.Comment: 25 pages, 2 figures(available from the authors), uses LATE
- …
