64,953 research outputs found
Persistent Orbital Degeneracy in Carbon Nanotubes
The quantum-mechanical orbitals in carbon nanotubes are doubly degenerate
over a large number of states in the Coulomb blockade regime. We argue that
this experimental observation indicates that electrons are reflected without
mode mixing at the nanotube-metal contacts. Two electrons occupying a pair of
degenerate orbitals (a ``shell'') are found to form a triplet state starting
from zero magnetic field. Finally, we observe unexpected low-energy excitations
at complete filling of a four-electron shell.Comment: 6 pages, 4 figure
Chiral expansion of the decay width
A chiral field theory of mesons has been applied to study the contribution of
the current quark masses to the decay width at
the next leading order. enhancement has been predicted and there is no
new parameter.Comment: 9 page
Discrimination of Individual Tigers (\u3cem\u3ePanthera tigris\u3c/em\u3e) from Long Distance Roars
This paper investigates the extent of tiger (Panthera tigris) vocal individuality through both qualitative and quantitative approaches using long distance roars from six individual tigers at Omaha\u27s Henry Doorly Zoo in Omaha, NE. The framework for comparison across individuals includes statistical and discriminant function analysis across whole vocalization measures and statistical pattern classification using a hidden Markov model (HMM) with frame-based spectral features comprised of Greenwood frequency cepstral coefficients. Individual discrimination accuracy is evaluated as a function of spectral model complexity, represented by the number of mixtures in the underlying Gaussian mixture model (GMM), and temporal model complexity, represented by the number of sequential states in the HMM. Results indicate that the temporal pattern of the vocalization is the most significant factor in accurate discrimination. Overall baseline discrimination accuracy for this data set is about 70% using high level features without complex spectral or temporal models. Accuracy increases to about 80% when more complex spectral models (multiple mixture GMMs) are incorporated, and increases to a final accuracy of 90% when more detailed temporal models (10-state HMMs) are used. Classification accuracy is stable across a relatively wide range of configurations in terms of spectral and temporal model resolution
Critical Temperature Tc and Charging Energy Ec between B-B layers of Superconducting diboride materials MgB2 in 3D JJA model
The diboride materials MB2 (M = Mg, Be, Pb, etc.) are discussed on the basis
of the 3D Josephson junction array (JJA) model due to Kawabata-Shenoy-Bishop,
in terms of the B-B layers in the diborides analogous to the Cu-O ones in the
cuprates.
We propose a possibility of superconducting materials with the MgB2-type
structure which exhibit higher critical temperature Tc over 39K of MgB2.
We point out a role of interstitial ionic atoms (e.g., Mg in MgB2) as
capacitors between the B-B layers, which reduce the charging coupling energy in
JJA.Comment: 3 pages, 1 figure included; to be published in J. Phys. Soc. Jpn. 70,
No.10 (2001
Ginzburg-Landau theory of crystalline anisotropy for bcc-liquid interfaces
The weak anisotropy of the interfacial free-energy is a crucial
parameter influencing dendritic crystal growth morphologies in systems with
atomically rough solid-liquid interfaces. The physical origin and quantitative
prediction of this anisotropy are investigated for body-centered-cubic (bcc)
forming systems using a Ginzburg-Landau theory where the order parameters are
the amplitudes of density waves corresponding to principal reciprocal lattice
vectors. We find that this theory predicts the correct sign,
, and magnitude, , of this anisotropy in good agreement
with the results of MD simulations for Fe. The results show that the
directional dependence of the rate of spatial decay of solid density waves into
the liquid, imposed by the crystal structure, is a main determinant of
anisotropy. This directional dependence is validated by MD computations of
density wave profiles for different reciprocal lattice vectors for
crystal faces. Our results are contrasted with the prediction of the reverse
ordering from an earlier formulation of
Ginzburg-Landau theory [Shih \emph{et al.}, Phys. Rev. A {\bf 35}, 2611
(1987)].Comment: 9 pages, 5 figure
Who Contributes to the Knowledge Sharing Economy?
Information sharing dynamics of social networks rely on a small set of
influencers to effectively reach a large audience. Our recent results and
observations demonstrate that the shape and identity of this elite, especially
those contributing \emph{original} content, is difficult to predict.
Information acquisition is often cited as an example of a public good. However,
this emerging and powerful theory has yet to provably offer qualitative
insights on how specialization of users into active and passive participants
occurs.
This paper bridges, for the first time, the theory of public goods and the
analysis of diffusion in social media. We introduce a non-linear model of
\emph{perishable} public goods, leveraging new observations about sharing of
media sources. The primary contribution of this work is to show that
\emph{shelf time}, which characterizes the rate at which content get renewed,
is a critical factor in audience participation. Our model proves a fundamental
\emph{dichotomy} in information diffusion: While short-lived content has simple
and predictable diffusion, long-lived content has complex specialization. This
occurs even when all information seekers are \emph{ex ante} identical and could
be a contributing factor to the difficulty of predicting social network
participation and evolution.Comment: 15 pages in ACM Conference on Online Social Networks 201
Two-photon interference with two independent pseudo-thermal sources
The nature of two-photon interference is a subject that has aroused renewed
interest in recent years and is still under debate. In this paper we report the
first observation of two-photon interference with independent pseudo-thermal
sources in which sub-wavelength interference is observed. The phenomenon may be
described in terms of the classical statistical distribution of the two sources
and their optical transfer functions.Comment: Phys. Rev. A 74, 053807 (2006
Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution
Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system
- …
