13,554 research outputs found
Evolution of Neutral Gas at High Redshift -- Implications for the Epoch of Galaxy Formation
Though observationally rare, damped Lya absorption systems dominate the mass
density of neutral gas in the Universe. Eleven high redshift damped Lya systems
covering 2.84 QSO Survey,
extending these absorption system surveys to the highest redshifts currently
possible. Combining our new data set with previous surveys we find that the
cosmological mass density in neutral gas, omega_g, does not rise as steeply
prior to z~2 as indicated by previous studies. There is evidence in the
observed omega_g for a flattening at z~2 and a possible turnover at z~3. When
combined with the decline at z>3.5 in number density per unit redshift of
damped systems with column densities log N(HI)>21 atoms cm^-2, these results
point to an epoch at z>3 prior to which the highest column density damped
systems are still forming. We find that over the redshift range 2<z<4 the total
mass in neutral gas is marginally comparable with the total visible mass in
stars in present day galaxies. However, if one considers the total mass visible
in stellar disks alone, ie excluding galactic bulges, the two values are
comparable. We are observing a mass of neutral gas comparable to the mass of
visible disk stars. Lanzetta, Wolfe & Turnshek (1995) found that omega_g(z~3.5)
was twice omega_g(z~2), implying a much larger amount of star formation must
have taken place between z=3.5 and z=2 than is indicated by metallicity
studies. This created a `cosmic G-dwarf problem'. The more gradual evolution of
omega_g we find alleviates this. These results have profound implications for
theories of galaxy formation.Comment: To appear in MNRAS. Latex file (4 pages of text) plus 3 separate
postscript figure files. Requires mn.sty. Postscript version with figures
embedded is available at http://www.ociw.edu/~lisa/publications.htm
Development and use of an extensometer for determining the mechanical compliance of crack toughness test specimens
Extensometer for determining mechanical compliance of crack toughness test specimen
APM z>4 QSO Survey: Distribution and Evolution of High Column Density HI Absorbers
Eleven candidate damped Lya absorption systems were identified in 27 spectra
of the quasars from the APM z>4 survey covering the redshift range
2.83.5). High resolution echelle spectra (0.8A FWHM)
have been obtained for three quasars, including 2 of the highest redshift
objects in the survey. Two damped systems have confirmed HI column densities of
N(HI) >= 10^20.3 atoms cm^-2, with a third falling just below this threshold.
We have discovered the highest redshift damped Lya absorber known at z=4.383 in
QSO BR1202-0725. The APM QSOs provide a substantial increase in the redshift
path available for damped surveys for z>3. We combine this high redshift sample
with other quasar samples covering the redshift range 0.008 < z < 4.7 to study
the redshift evolution and the column density distribution function for
absorbers with log N(HI)>=17.2. In the HI column density distribution
f(N)=kN^-beta we find evidence for breaks in the power law, flattening for
17.221.2. The column density
distribution function for the data with log N(HI)>=20.3 is better fit with the
form f(N)=(f*/N*)(N/N*)^-beta exp(-N/N*). Significant redshift evolution in the
number density per unit redshift is evident in the higher column density
systems with an apparent decline in N(z) for z>3.5.Comment: To appear in MNRAS. Latex file (10 pages of text) plus 14 separate
postscript figure files. Requires mn.sty. Postscript version with figures
embedded is available at http://www.ociw.edu/~lisa/publications.htm
Using the Ca II Triplet to Trace Abundance Variations in Individual Red Giant Branch stars in Three Nearby Galaxies
Spectroscopic abundance determinations for stars spanning a Hubble time in
age are necessary in order to unambiguously determine the evolutionary
histories of galaxies. Using FORS1 in Multi-Object Spectroscopy mode on ANTU
(UT1) at the ESO-VLT on Paranal we obtained near infrared spectra from which we
measured the equivalent widths of the two strongest Ca II triplet lines to
determine metal abundances for a sample of Red Giant Branch stars, selected
from ESO-NTT optical (I, V-I) photometry of three nearby, Local Group,
galaxies: the Sculptor Dwarf Spheroidal, the Fornax Dwarf Spheroidal and the
Dwarf Irregular NGC 6822. The summed equivalent width of the two strongest
lines in the Ca II triplet absorption line feature, centered at 8500A, can be
readily converted into an [Fe/H] abundance using the previously established
calibrations by Armandroff & Da Costa (1991) and Rutledge, Hesser & Stetson
(1997). We measured metallicities for 37 stars in Sculptor, 32 stars in Fornax,
and 23 stars in NGC 6822, yielding more precise estimates of the metallicity
distribution functions for these galaxies than it is possible to obtain
photometrically. In the case of NGC 6822, this is the first direct measurement
of the abundances of the intermediate-age and old stellar populations. We find
metallicity spreads in each galaxy which are broadly consistent with the
photometric width of the Red Giant Branch, although the abundances of
individual stars do not always appear to correspond to their colour. This is
almost certainly predominantly due to a highly variable star formation rate
with time in these galaxies, which results in a non-uniform,
non-globular-cluster-like, evolution of the Ca/Fe ratio.Comment: Accepted for publication in MNRA
The Lense-Thirring effect in the Jovian system of the Galilean satellites and its measurability
In this paper we investigate the possibility of measuring the post-Newtonian
general relativistic gravitomagnetic Lense-Thirring effect in the Jovian system
of its Galilean satellites Io, Europa, Ganymede and Callisto in view of recent
developments in processing and modelling their optical observations spanning a
large time interval (125 years). The present day best observations have an
accuracy between several kilometers to few tens of kilometers, which is just
the order of magnitude of the Lense-Thirring shifts of the orbits of the
Galilean satellites over almost a century. From a comparison between analytical
development and numerical integration it turns out that, unfortunately, most of
the secular component of the gravitomagnetic signature is removed in the
process of fitting the initial conditions. Indeed, an estimation of the
magnitude of the Lense-Thirring effect in the ephemerides residuals is given;
the resulting residuals have a maximum magnitude of 20 meters only (over 125
years).Comment: Latex, 10 pages, 4 tables, 3 figures, 27 references. Invited paper
for a Special Issue of Int. J. Mod. Phys. D on the Lense-Thirring effect, D.
Grumiller edito
Advanced code-division multiplexers for superconducting detector arrays
Multiplexers based on the modulation of superconducting quantum interference
devices are now regularly used in multi-kilopixel arrays of superconducting
detectors for astrophysics, cosmology, and materials analysis. Over the next
decade, much larger arrays will be needed. These larger arrays require new
modulation techniques and compact multiplexer elements that fit within each
pixel. We present a new in-focal-plane code-division multiplexer that provides
multiplexing elements with the required scalability. This code-division
multiplexer uses compact lithographic modulation elements that simultaneously
multiplex both signal outputs and superconducting transition-edge sensor (TES)
detector bias voltages. It eliminates the shunt resistor used to voltage bias
TES detectors, greatly reduces power dissipation, allows different dc bias
voltages for each TES, and makes all elements sufficiently compact to fit
inside the detector pixel area. These in-focal-plane code-division multiplexers
can be combined with multi-gigahertz readout based on superconducting
microresonators to scale to even larger arrays.Comment: 8 pages, 3 figures, presented at the 14th International Workshop on
Low Temperature Detectors, Heidelberg University, August 1-5, 2011,
proceedings to be published in the Journal of Low Temperature Physic
The NIR structure of the barred galaxy NGC253 from VISTA
[abridged] We used J and Ks band images acquired with the VISTA telescope as
part of the science verification to quantify the structures in the stellar disk
of the barred Sc galaxy NGC253. Moving outward from the galaxy center, we find
a nuclear ring within the bright 1 kpc diameter nucleus, then a bar, a ring
with 2.9 kpc radius. From the Ks image we obtain a new measure of the
deprojected length of the bar of 2.5 kpc. The bar's strength, as derived from
the curvature of the dust lanes in the J-Ks image, is typical of weak bars.
From the deprojected length of the bar, we establish the corotation radius
(R_CR=3 kpc) and bar pattern speed (Omega_b = 61.3 km /s kpc), which provides
the connection between the high-frequency structures in the disk and the
orbital resonances induced by the bar. The nuclear ring is located at the inner
Lindblad resonance. The second ring does not have a resonant origin, but it
could be a merger remnant or a transient structure formed during an
intermediate stage of the bar formation. The inferred bar pattern speed places
the outer Lindblad resonance within the optical disk at 4.9 kpc, in the same
radial range as the peak in the HI surface density. The disk of NGC253 has a
down-bending profile with a break at R~9.3 kpc, which corresponds to about 3
times the scale length of the inner disk. We discuss the evidence for a
threshold in star formation efficiency as a possible explanation of the steep
gradient in the surface brightness profile at large radii. The NIR photometry
unveils the dynamical response of the NGC253 stellar disk to its central bar.
The formation of the bar may be related to the merger event that determined the
truncation of stars and gas at large radii and the perturbation of the disk's
outer edge.Comment: Accepted for publication in Astronomy & Astrphysics. High resolution
pdf file is available at the following link:
https://www.dropbox.com/s/4o4cofs1lyjrtpv/NGC253.pd
Recent occurrence of Cylindrospermopsis raciborskii, in Waikato lakes of New Zealand.
Cylindrospermopsis raciborskii is a toxin-producing species of cyanobacteria that in autumn 2003 was recorded for the first time in three shallow (max. depth ≤5 m) Waikato lakes and a hydro-electric dam on the Waikato River, New Zealand. It formed water blooms at densities >100 000 cells/ml in Lakes Waahi and Whangape. Net rates of population growth >0.2 day-1 were recorded for C. raciborskii in Lakes Ngaroto, Waahi, and Karapiro, based on comparisons of low numbers (detection of cells/ml) from initial samples and its presence at bloom densities (>15 000 cells/ml) in the subsequent sample "x"-"y" days later. C. raciborskii may be well adapted to rapid proliferation in the Waikato lakes, which are eutrophic to hypertrophic, with high light attenuation, and where nitrogen (N) fixation may provide it with a competitive advantage over non-nitrogen fixing algae under N-limited conditions
ROSAT HRI X-ray Observations of the Open Globular Cluster NGC 288
A ROSAT HRI X-ray image was obtained of the open globular cluster NGC 288,
which is located near the South Galactic Pole. This is the first deep X-ray
image of this system. We detect a Low Luminosity Globular Cluster X-ray source
(LLGCX) RXJ005245.0-263449 with an X-ray luminosity of (5.5+-1.4)x10^32 ergs/s
(0.1-2.0 keV), which is located very close to the cluster center. There is
evidence for X-ray variability on a time scale of <~ 1 day. The presence of
this LLGCX in such an open cluster suggests that dense stellar systems with
high interaction rates are not needed to form LLGCXs. We also searched for
diffuse X-ray emission from NGC 288. Upper limits on the X-ray luminosities are
L_X^h < 9.5x10^32 ergs/s (0.52-2.02 keV) and L_X^s < 9.3x10^32 ergs/s
(0.11-0.41 keV). These imply upper limits to the diffuse X-ray to optical light
ratios in NGC 288 which are lower than the values observed for X-ray faint
early-type galaxies. This indicates that the soft X-ray emission in these
galaxies is due either to a component which is not present in globular clusters
(e.g., interstellar gas, or a stellar component which is not found in low
metallicity Population II systems), or to a relatively small number of bright
Low Mass X-ray Binaries (LMXBs).Comment: The Astrophysical Journal in press. Minor revisions to improve
presentation. 6 pages with 3 embedded Postscript figures in emulateapj.st
- …
